Bài 2: Nhân đa thức với đa thức

Minie Park
Xem chi tiết
Akai Haruma
13 tháng 6 2018 lúc 0:49

Lời giải:

a)

\(f(x)=ax^2+bx\Rightarrow \left\{\begin{matrix} f(x)=ax^2+bx\\ f(x-1)=a(x-1)^2+b(x-1)\end{matrix}\right.\)

Do đó:

\(f(x)-f(x-1)=x\)

\(\Leftrightarrow ax^2+bx-a(x-1)^2-b(x-1)=x\)

\(\Leftrightarrow a[x^2-(x-1)^2]+b=x\)

\(\Leftrightarrow a(2x-1)+b=x\)

\(\Leftrightarrow x(2a-1)+(b-a)=0\)

Vì đẳng thức luôn đúng với mọi $x$ nên \(\left\{\begin{matrix} 2a-1=0\\ b-a=0\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

b) \(f(x)=\frac{1}{2}x^2+\frac{1}{2}x\)

Theo phần a:

\(1=f(1)-f(0)\)

\(2=f(2)-f(1)\)

\(3=f(3)-f(2)\)

.....

\(n=f(n)-f(n-1)\)

Cộng theo vế:

\(\Rightarrow S=1+2+...+n=f(n)-f(0)=\frac{1}{2}n^2+\frac{1}{2}n-\frac{1}{2}.0^2-\frac{1}{2}.0=\frac{n(n+1)}{2}\)

Bình luận (0)
Khánh Nguyễn
Xem chi tiết
Hung nguyen
24 tháng 3 2018 lúc 8:33

M góp ý tí: Bác Akai Haruma muốn dùng cái cosi dạng engel thì trước hết phải chứng minh \(\dfrac{1}{1-2\left(ab+bc+ca\right)}>0\) đã nhé. Không thì không được dùng đâu.

Bình luận (1)
Akai Haruma
24 tháng 3 2018 lúc 1:20

Lời giải:

Áp dụng BĐT Cauchy ta có:

\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}\)

\(\Leftrightarrow (a+b+c)(ab+bc+ac)\geq 9abc\Leftrightarrow ab+bc+ac\geq 9abc\)

\(\Rightarrow \frac{1}{abc}\geq \frac{9}{ab+bc+ac}\)

\(\Rightarrow M\geq \frac{1}{1-2(ab+bc+ac)}+\frac{9}{ab+bc+ac}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{1-2(ab+bc+ac)}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\geq \frac{9}{1-2(ab+bc+ac)+ab+bc+ac+ab+bc+ac}=9(1)\)

Theo hệ quả của BĐT Cauchy: \(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{1}{3}\)

\(\Rightarrow \frac{7}{ab+bc+ac}\geq 21(2)\)

Từ \((1); (2)\Rightarrow M\geq 9+21=30\) hay \(M_{\min}=30\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)