Bài 3: Nhị thức Niu-tơn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Títt
Xem chi tiết
Thị Ỉn
Xem chi tiết
Mysterious Person
3 tháng 8 2018 lúc 10:51

ta có : \(\left(1-3x\right)^n=\sum\limits^n_{k=0}C^k_n\left(1\right)^{n-k}\left(-3\right)^k\left(x^k\right)\)

để có \(x^2\) trong khai triển thì \(k=2\)

khi đó hệ số của số hạng chứa \(x^2\)\(\)\(C^2_n\left(-3\right)^2=90\)

\(\Leftrightarrow C^2_n=10\Leftrightarrow\dfrac{n!}{2!\left(n-2\right)!}=10\) \(\Leftrightarrow\dfrac{n\left(n-1\right)}{2}=10\)

\(\Leftrightarrow n^2-n-20=0\left[{}\begin{matrix}n=5\left(N\right)\\n=-4\left(L\right)\end{matrix}\right.\) vậy \(n=5\)

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Mysterious Person
18 tháng 8 2018 lúc 20:15

giống câu này nha : https://hoc24.vn/hoi-dap/question/649217.html

Bình Trần Thị
Xem chi tiết
Mysterious Person
3 tháng 8 2018 lúc 10:44

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

Bình Trần Thị
Xem chi tiết