Luyện tập chung trang 28

Bài tập 6.34 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 29)

Hướng dẫn giải

a) Vì \(a + b + c = \sqrt 2  - \sqrt 2  - 1 + 1 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}\).

b) Vì \(a - b + c = 2 - \sqrt 3  + 1 - 3 + \sqrt 3  = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} =  - 1;{x_2} = \frac{{3 - \sqrt 3 }}{2}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6.35 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 29)

Hướng dẫn giải

Vì \(\Delta  = {\left( { - 5} \right)^2} - 4.1.3 = 13 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 3\).

a) Ta có:

\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.3 = 19\)

b) Cách 1. Ta có: 

\({\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 \)

\(= {\left( {{x_1}^2 + {x_2}}^2 \right)} - 2{x_1}{x_2} = 19 - 2.3 = 13\)

Cách 2. Ta có:

\({\left( {{x_1} - {x_2}} \right)^2} = x_1^2 - 2{x_1}{x_2} + x_2^2 \)

\(= {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {5^2} - 4.3 = 13\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6.36 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 29)

Hướng dẫn giải

a) Hai số u và v là nghiệm của phương trình \({x^2} - 15x + 56 = 0\)

Ta có: \(\Delta  = {\left( { - 15} \right)^2} - 4.56 = 1 > 0\)

Suy ra phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{15 + 1}}{2} = 8;{x_2} = \frac{{15 - 1}}{2} = 7\).

Vậy \(u = 8;v = 7\) hoặc \(u = 7;v = 8\).

b) Ta có: \({u^2} + {v^2} = 125 \Rightarrow {\left( {u + v} \right)^2} - 2uv = 125 \Rightarrow {\left( {u + v} \right)^2} = 125 + 2.22 = 169\)

Do đó, \(u + v = 13\) hoặc \(u + v =  - 13\).

Trường hợp 1: \(u + v = 13\):

Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 22 = 0\)

Ta có: \(\Delta  = {\left( { - 13} \right)^2} - 4.22 =  81 > 0\).

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{13 +\sqrt{81}}{2} = 11\) và \(x_2 = \frac{13 - \sqrt{81}}{2} = 2\)

Trường hợp 2: \(u + v =  - 13\):

Hai số u và v là nghiệm của phương trình \({x^2} + 13x + 22 = 0\)

Ta có: \(\Delta  = {13^2} - 4.22 =  81 > 0\). 

Suy ra phương trình có hai nghiệm phân biệt \(x_1 = \frac{-13 +\sqrt{81}}{2} = -2\) và \(x_2 = \frac{-13 - \sqrt{81}}{2} = -11\)

Vậy \((u,v) \in \left\{ (-2; -11); (-11;-2); (2; 11); (11;2) \right\} \) thỏa mãn \({u^2} + {v^2} = 125,uv = 22\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6.37 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 29)

Hướng dẫn giải

Gọi độ dài cạnh đáy của chiếc hộp là x (cm), điều kiện: \(x > 0\).

Diện tích xung quanh của hình hộp là: \(10.4x = 40x\left( {c{m^2}} \right)\).

Vì hộp không có nắp nên diện tích đáy của hình hộp là: \({x^2}\left( {c{m^2}} \right)\).

Tổng diện tích xung quanh và diện tích đáy là: \({x^2} + 40x\left( {c{m^2}} \right)\).

Vì tổng diện tích xung quanh và diện tích đáy là \(800c{m^2}\) nên ta có phương trình:

\({x^2} + 40x = 800\)

\({x^2} + 40x - 800 = 0\)

Ta có: \(\Delta ' = {20^2} + 800 = 1200 \Rightarrow \sqrt {\Delta '}  = 20\sqrt 3 \), phương trình có hai nghiệm phân biệt:

\({x_1} =  - 20 + 20\sqrt 3  \approx 14,6\left( {tm} \right),{x_1} =  - 20 - 20\sqrt 3 \left( {ktm} \right)\)

Vậy độ dài cạnh đáy của hình hộp khoảng 14,6cm.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6.38 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 29)

Hướng dẫn giải

Với \(R = 120\;000\) thay vào công thức \(R = x\left( {100 - 0,02x} \right)\) ta có:

\(x\left( {100 - 0,02x} \right) = 120\;000\)

\(0,02{x^2} - 100x + 120\;000 = 0\)

Ta có: \(\Delta ' = {\left( { - 50} \right)^2} - 0,02.120\;000 = 100 \Rightarrow \sqrt {\Delta '}  = 10\)

Phương trình có hai nghiệm phân biệt:

\({x_1} = \frac{{50 + 10}}{{0,02}} = 3000\left( {tm} \right);{x_2} = \frac{{50 - 10}}{{0,02}} = 2000\left( {tm} \right)\)

+) Với \(x = 3000\) thì \(p = 100 - 0,02.3000 = 100 - 60 = 40\) (nghìn đồng)

+) Với \(x = 2000\) thì \(p = 100 - 0,02.2000 = 100 - 40 = 60\) (nghìn đồng)

Vậy khi bán được 3000 chiếc áo với giá 40 nghìn đồng hoặc 2000 chiếc áo với giá 60 nghìn đồng thì doanh thu đạt 120 triệu đồng.

(Trả lời bởi datcoder)
Thảo luận (1)