Gọi độ dài cạnh đáy của chiếc hộp là x (cm), điều kiện: \(x > 0\).
Diện tích xung quanh của hình hộp là: \(10.4x = 40x\left( {c{m^2}} \right)\).
Vì hộp không có nắp nên diện tích đáy của hình hộp là: \({x^2}\left( {c{m^2}} \right)\).
Tổng diện tích xung quanh và diện tích đáy là: \({x^2} + 40x\left( {c{m^2}} \right)\).
Vì tổng diện tích xung quanh và diện tích đáy là \(800c{m^2}\) nên ta có phương trình:
\({x^2} + 40x = 800\)
\({x^2} + 40x - 800 = 0\)
Ta có: \(\Delta ' = {20^2} + 800 = 1200 \Rightarrow \sqrt {\Delta '} = 20\sqrt 3 \), phương trình có hai nghiệm phân biệt:
\({x_1} = - 20 + 20\sqrt 3 \approx 14,6\left( {tm} \right),{x_1} = - 20 - 20\sqrt 3 \left( {ktm} \right)\)
Vậy độ dài cạnh đáy của hình hộp khoảng 14,6cm.