Nhu cầu của khách hàng đối với một loại áo phông tại một cửa hàng được cho bởi phương trình p = 100 – 0,02x, trong đó p là giá tiền của mỗi chiếc áo (nghìn đồng) và x là số lượng áo phông bán được. Doanh thu R (nghìn đồng) khi bán được x chiếc áo phông là:
R = xp = x(100 – 0,02x).
Hỏi cần phải bán được bao nhiêu chiếc áo phông để doanh thu đạt 120 triệu đồng?
Với \(R = 120\;000\) thay vào công thức \(R = x\left( {100 - 0,02x} \right)\) ta có:
\(x\left( {100 - 0,02x} \right) = 120\;000\)
\(0,02{x^2} - 100x + 120\;000 = 0\)
Ta có: \(\Delta ' = {\left( { - 50} \right)^2} - 0,02.120\;000 = 100 \Rightarrow \sqrt {\Delta '} = 10\)
Phương trình có hai nghiệm phân biệt:
\({x_1} = \frac{{50 + 10}}{{0,02}} = 3000\left( {tm} \right);{x_2} = \frac{{50 - 10}}{{0,02}} = 2000\left( {tm} \right)\)
+) Với \(x = 3000\) thì \(p = 100 - 0,02.3000 = 100 - 60 = 40\) (nghìn đồng)
+) Với \(x = 2000\) thì \(p = 100 - 0,02.2000 = 100 - 40 = 60\) (nghìn đồng)
Vậy khi bán được 3000 chiếc áo với giá 40 nghìn đồng hoặc 2000 chiếc áo với giá 60 nghìn đồng thì doanh thu đạt 120 triệu đồng.