Bài tập cuối chương V

Câu 6 (SGK Cánh Diều - Tập 2 - Trang 87)

Hướng dẫn giải

a) Phương trình mặt phẳng (P): \(2\left( {x + 3} \right) - 4\left( {y - 1} \right) + 1.\left( {z - 4} \right) = 0 \Leftrightarrow 2x - 4y + z + 6 = 0\).

b) Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 3}&{ - 2}\\4&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 2}&1\\1&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&{ - 3}\\{ - 3}&4\end{array}} \right|} \right) = \left( {5;5; - 5} \right)\).

(P) đi qua điểm N(2; -1; 5) và nhận \(\frac{1}{5}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {1;1; - 1} \right)\) làm vectơ pháp tuyến nên phương trình mặt phẳng (P): \(x - 2 + y + 1 - \left( {z - 5} \right) = 0 \Leftrightarrow x + y - z + 4 = 0\)

c) Mặt phẳng (Q) có một vectơ pháp tuyến là: \(\overrightarrow n  = \left( {2;1; - 1} \right)\).

Vì (P) song song với (Q) nên mặt phẳng (P) nhận \(\overrightarrow n  = \left( {2;1; - 1} \right)\) làm một vectơ pháp tuyến. Phương trình mặt phẳng (P) là: \(2\left( {x - 4} \right) + y - \left( {z + 7} \right) = 0 \Leftrightarrow 2x + y - z - 15 = 0\).

d) Đường thẳng \(\Delta \) có một vectơ chỉ phương là: \(\overrightarrow u  = \left( {2;1;5} \right)\).

Vì (P) vuông góc với đường thẳng \(\Delta \) nên mặt phẳng (P) nhận \(\overrightarrow u  = \left( {2;1;5} \right)\) làm một vectơ pháp tuyến. Phương trình mặt phẳng (P) là:

\(2\left( {x + 4} \right) + y - 9 + 5\left( {z - 2} \right) = 0 \Leftrightarrow 2x + y + 5z - 11 = 0\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 5 (SGK Cánh Diều - Tập 2 - Trang 87)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AB}  = \left( { - 1; - 1;2} \right),\overrightarrow {AC}  = \left( {2; - 1; - 1} \right)\).

Một vectơ vuông góc với cả hai vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) là: \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

Ta có: \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&2\\{ - 1}&{ - 1}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 1}\\{ - 1}&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 1}\\2&{ - 1}\end{array}} \right|} \right) = \left( {3;3;3} \right)\).

b) Đường thẳng AB đi qua điểm A(0; 1; 3) và nhận \(\overrightarrow {AB}  = \left( { - 1; - 1;2} \right)\) làm một vectơ chỉ phương nên:

+ Phương trình tham số của đường thẳng AB: \(\left\{ \begin{array}{l}x =  - t\\y = 1 - t\\z = 3 + 2t\end{array} \right.\) (t là tham số).

+ Phương trình chính tắc của đường thẳng AB: \(\frac{x}{{ - 1}} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 3}}{2}\).

Đường thẳng AC đi qua điểm A(0; 1; 3) và nhận \(\overrightarrow {AC}  = \left( {2; - 1; - 1} \right)\) làm một vectơ chỉ phương nên:

+ Phương trình tham số của đường thẳng AC: \(\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 3 - t\end{array} \right.\) (t là tham số).

+ Phương trình chính tắc của đường thẳng AC: .

c) Mặt phẳng (ABC) đi qua A(0; 1; 3) và nhận \(\frac{1}{3}\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;1;1} \right)\) làm một vectơ pháp tuyến nên phương trình tổng quát mặt phẳng (ABC) là:

\(x + y - 1 + z - 3 = 0 \Leftrightarrow x + y + z - 4 = 0\)

d) Thay tọa độ điểm D(1; 1; -2) vào mặt phẳng (ABC) ta có: \(1 + 1 + \left( { - 2} \right) - 4 =  - 4 \ne 0\) nên điểm D không thuộc mặt phẳng (ABC). Do đó, bốn điểm A, B, C, D không đồng phẳng.

e) Ta có: \(d\left( {D,\left( {ABC} \right)} \right) = \frac{{\left| {1 + 1 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{4\sqrt 3 }}{3}\).


(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 10 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 3;4} \right)\).

Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1;1;1} \right)\).

Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {2.1 - 3.1 + 4.1} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {4^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{3}{{\sqrt {87} }}\) nên \(\left( {\left( P \right),\Delta } \right) \approx {19^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 7 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

a) (S) có tâm I(4; -2; 1), bán kính \(R = 9\) có phương trình là \({\left( {x - 4} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 1} \right)^2} = 81\)

b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( { - 1 - 0} \right)}^2}}  = \sqrt 6 \) nên phương trình mặt cầu (S) là: \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 6\).

c) Gọi I là trung điểm của AB nên \(I\left( {0;1;2} \right)\).

Vì mặt cầu (S) có đường kính là AB nên (S) có tâm \(I\left( {0;1;2} \right)\), bán kính \(R = IA = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {2 - 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}}  = \sqrt 6 \)

Do đó, phương trình mặt cầu (S) là: \({x^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 6\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 9 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1; - \sqrt 2 ;1} \right)\).

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {1;1; - \sqrt 2 } \right)\).

Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {1.1 - \sqrt 2 .1 - \sqrt 2 .1} \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - \sqrt 2 } \right)}^2}} }} = \frac{{2\sqrt 2  - 1}}{4}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {63^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 11 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

Mặt phẳng \(\left( {{P_1}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {2;2; - 1} \right)\); mặt phẳng \(\left( {{P_2}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {1; - 2; - 2} \right)\).

Do đó, \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {2.1 + 2\left( { - 2} \right) - 1.\left( { - 2} \right)} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 0\) nên \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = {90^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 13 (SGK Cánh Diều - Tập 2 - Trang 89)

Hướng dẫn giải

a) Góc \(\theta \) là góc giữa đường thẳng GH và mặt phẳng (Oxy).

Tại thời điểm \(t = 0\) thì \(\overrightarrow {{r_0}}  = \left( {1;0,5;0} \right)\). Trực thăng cất cánh từ điểm G nên G(1; 0,5; 0).

Tại thời điểm \(t = 1\), trực thăng bay đến vị trí K thuộc đường thẳng GH với K(2; 2,5; 2).

Đường thẳng GH nhận \(\overrightarrow {GK}  = \left( {1;2;2} \right)\) làm một vectơ chỉ phương và mặt phẳng (Oxy) nhận \(\overrightarrow k  = \left( {0;0;1} \right)\) làm một vectơ pháp tuyến.

Ta có: \(\sin \left( {GH,\left( {Oxy} \right)} \right) = \frac{{\left| {1.0 + 2.0 + 2.1} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{2}{3}\) nên \(\left( {GH,\left( {Oxy} \right)} \right) \approx {42^o}\).

Vậy \(\theta  \approx {42^o}\).

b) Gọi K’ là hình chiếu của K lên mặt phẳng (Oxy). Suy ra, K’(2; 2,5; 0).

Vì F là hình chiếu của H lên mặt phẳng (Oxy) nên \(K' \in GF\).

Suy ra, đường thẳng GF có một vectơ chỉ phương là \(\overrightarrow {GK'}  = \left( {1;2;0} \right)\).

Phương trình tham số của đường thẳng GF: \(\left\{ \begin{array}{l}x = 1 + t'\\y = 0,5 + 2t'\\z = 0\end{array} \right.\) (\(t'\) là tham số).

c) Trực thăng bay vào mây ở độ cao 2km, tức là vị trí điểm mà trực thăng bắt đầu di chuyển vào đám mây có cao độ \(z = 2\) nên \(2t = 2 \Rightarrow t = 1\). Vậy tọa độ điểm mà trực thăng bắt đầu đi vào đám mây là (2; 2,5; 2).

d) Ta có: \(H\left( {1 + t;0,5 + 2t;2t} \right)\), \(\overrightarrow {HM}  = \left( {4 - t;4 - 2t;3 - 2t} \right)\).

HM vuông góc với đường bay GH khi \(\overrightarrow {HM}  \bot \overrightarrow {GK}  \Leftrightarrow \overrightarrow {HM} .\overrightarrow {GK}  = 0\)

\( \Leftrightarrow \left( {4 - t} \right).1 + \left( {4 - 2t} \right).2 + \left( {3 - 2t} \right).2 = 0 \Leftrightarrow t = 2\)

Vậy \(t = 2\) thì HM vuông góc với đường bay GH.

Khi đó, khoảng cách từ máy bay trực thăng đến đỉnh núi là:

\(HM = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {4 - 2.2} \right)}^2} + {{\left( {3 - 2.2} \right)}^2}}  = \sqrt 5 \left( {km} \right)\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 14 (SGK Cánh Diều - Tập 2 - Trang 89)

Hướng dẫn giải

a) Đường thẳng d đi qua điểm A(-688;-185;8), có một vectơ chỉ phương \(\overrightarrow u  = \left( {91;75;0} \right)\) có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 688 + 91t\\y =  - 185 + 75t\\z = 8\end{array} \right.\) (t là tham số).

Gọi B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa.

Vì B thuộc d nên B(-688 + 91t; -185 + 75t; 8).

Để B là vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa thì \(OB = 417\).

Do đó, \(\sqrt {{{\left( { - 688 + 91t} \right)}^2} + {{\left( { - 185 + 75t} \right)}^2} + {8^2}}  = 417\)

\( \Leftrightarrow 13\;906{t^2} - 152\;966t + 333\;744 = 0\)\( \Leftrightarrow t = 3\) hoặc \(t = 8\).

Với \(t = 3\) ta có B(-415; 40; 8) và \(AB = \sqrt {{{\left( { - 415 + 688} \right)}^2} + {{\left( {40 + 185} \right)}^2}}  = \sqrt {125\;154} \).

Với \(t = 8\) ta có B(40; 415; 8) và \(AB = \sqrt {{{\left( {40 + 688} \right)}^2} + {{\left( {415 + 185} \right)}^2}}  = \sqrt {889\;984} \).

Vì \(\sqrt {125\;154}  < \sqrt {889\;984} \) nên tọa độ vị trí sớm nhất mà máy bay xuất hiện trên màn hình ra đa là (-415; 40; 8).

b) Gọi H là vị trí mà máy bay gần đài kiểm soát không lưu nhất. Vì H thuộc d nên H(-688+91t’; -185+75t’;8).

Để OH là ngắn nhất khi và chỉ khi \(OH \bot d \Leftrightarrow \overrightarrow {OH}  \bot \overrightarrow u  \Leftrightarrow \overrightarrow {OH} .\overrightarrow u  = 0\)

\( \Leftrightarrow \left( { - 688 + 91t'} \right).91 + \left( { - 185 + 75t'} \right).75 + 8.0 = 0 \Leftrightarrow 13\;906t' - 76\;483 = 0 \Leftrightarrow t' = \frac{{11}}{2}\).

Do đó, \(H\left( {\frac{{ - 375}}{2};\frac{{455}}{2};8} \right)\).

Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

\(OH = \sqrt {{{\left( {\frac{{ - 375}}{2}} \right)}^2} + {{\left( {\frac{{455}}{2}} \right)}^2} + {8^2}}  = \frac{{\sqrt {347\;906} }}{2}\left( {km} \right)\).

c) Theo a ta có: tọa độ của vị trí mà máy bay ra khỏi màn hình ra đa là: (40; 415; 8).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 12 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

Gọi \(C\left( {{x_C};{y_C};{z_C}} \right)\). Ta có: \(\overrightarrow {OB}  = \left( {a;0;0} \right),\overrightarrow {DC}  = \left( {{x_C};{y_C} - a;{z_C}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên OBCD là hình vuông.

Do đó: \(\overrightarrow {DC}  = \overrightarrow {OB}  \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} - a = 0\\{z_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} = a\\{z_C} = 0\end{array} \right.\). Suy ra, C(a; a; 0).

Gọi \(D'\left( {{x_{D'}};{y_{D'}};{z_{D'}}} \right)\). Ta có: \(\overrightarrow {OO'}  = \left( {0;0;a} \right),\overrightarrow {DD'}  = \left( {{x_{D'}};{y_{D'}} - a;{z_{D'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên ODD’O’ là hình vuông.

Do đó: \(\overrightarrow {DD'}  = \overrightarrow {OO'}  \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} - a = 0\\{z_{D'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} = a\\{z_{D'}} = a\end{array} \right.\). Suy ra, D’(0; a; a).

Gọi \(B'\left( {{x_{B'}};{y_{B'}};{z_{B'}}} \right)\). Ta có: \(\overrightarrow {OO'}  = \left( {0;0;a} \right),\overrightarrow {BB'}  = \left( {{x_{B'}} - a;{y_{B'}};{z_{B'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên OBB’O’ là hình vuông.

Do đó: \(\overrightarrow {BB'}  = \overrightarrow {OO'}  \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} - a = 0\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = a\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right.\). Suy ra, B’(a; 0; a).

a) Ta có: \(\overrightarrow {OB'}  = \left( {a;0;a} \right),\overrightarrow {OD'}  = \left( {0;a;a} \right)\)\(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&a\\a&a\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\a&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&0\\0&a\end{array}} \right|} \right) = \left( { - {a^2}; - {a^2};{a^2}} \right)\)

Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến.

Lại có: \(\overrightarrow {O'C}  = \left( {a;a; - a} \right),\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] =  - a.\overrightarrow {O'C} \) nên hai vectơ \(\overrightarrow {O'C} ,\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right]\) cùng phương. Do đó, \(\overrightarrow {O'C} \) là một vectơ pháp tuyến của mặt phẳng (OB’D’). Vậy O'C vuông góc với mặt phẳng (OB'D').

b) Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm O(0; 0; 0) nên phương trình mặt phẳng (OB’D’) là:

\( - {a^2}\left( {x - 0} \right) - {a^2}\left( {y - 0} \right) + {a^2}\left( {z - 0} \right) = 0 \Leftrightarrow x + y - z = 0\) (Do \(a > 0\))

Đường thẳng O’C đi qua điểm O'(0; 0; a) và nhận \(\frac{1}{a}\overrightarrow {O'C}  = \left( {1;1; - 1} \right)\) làm một vectơ chỉ phương nên phương trình tham số đường thẳng O’C là: \(\left\{ \begin{array}{l}x = t\\y = t\\z = a - t\end{array} \right.\) (t là tham số).

Gọi G là giao điểm của đường thẳng O’C và mặt phẳng (OB’D’).

Vì G thuôc O’C nên G(t; t; a-t). Vì G thuộc mặt phẳng (OB’D’) nên:

\(t + t - \left( {a - t} \right) = 0 \Leftrightarrow t = \frac{a}{3}\). Do đó, \(G\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).

Gọi G’ là trọng tâm của tam giác OB’D’ nên \(G'\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).

Khi đó, G trùng với G’. Vậy giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.

c) Gọi \(C'\left( {{x_{C'}};{y_{C'}};{z_{C'}}} \right)\). Ta có: \(\overrightarrow {OO'}  = \left( {0;0;a} \right),\overrightarrow {CC'}  = \left( {{x_{C'}} - a;{y_{C'}} - a;{z_{C'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên \(\overrightarrow {CC'}  = \overrightarrow {OO'}  \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - a = 0\\{y_{C'}} - a = 0\\{z_{C'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = a\\{y_{C'}} = a\\{z_{C'}} = a\end{array} \right.\).

Suy ra, C’(a; a; a).

Ta có: \(\overrightarrow {C'B}  = \left( {0; - a; - a} \right),\overrightarrow {C'D}  = \left( { - a;0 - a} \right)\), \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - a}&{ - a}\\0&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&0\\{ - a}&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - a}\\{ - a}&0\end{array}} \right|} \right) = \left( {{a^2};{a^2}; - {a^2}} \right)\)

Mặt phẳng (C'BD) nhận \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {{a^2};{a^2}; - {a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm D(0; a; 0) nên có phương trình: \({a^2}.x + {a^2}\left( {y - a} \right) - {a^2}z = 0 \Leftrightarrow x + y - z - a = 0\)

Ta có: \(d\left( {B',\left( {C'BD} \right)} \right) = \frac{{\left| {a + 0 - a - a} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{a}{{\sqrt 3 }}\).

d) Ta có: \(\overrightarrow {O'C}  = \left( {a;a; - a} \right),\overrightarrow {O'D}  = \left( {0;a; - a} \right)\), \(\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}a&{ - a}\\a&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&a\\{ - a}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\0&a\end{array}} \right|} \right) = \left( {0;{a^2};{a^2}} \right)\)

Mặt phẳng (CO’D) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {0;1;1} \right)\) làm một vectơ pháp tuyến, mặt phẳng (C'BD) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {1;1; - 1} \right)\) làm một vectơ pháp tuyến.

Ta có: \(\cos \left( {\left( {CO'D} \right),\left( {C'BD} \right)} \right) = \frac{{\left| {1.0 + 1.1 - 1.1} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{0^2} + {1^2} + {1^2}} }} = 0\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 8 (SGK Cánh Diều - Tập 2 - Trang 88)

Hướng dẫn giải

a) Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {3;4; - 1} \right)\) và đi qua điểm \(A\left( { - 1; - 5;5} \right)\).

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {5; - 2;7} \right)\) và đi qua điểm \(B\left( { - 13;5; - 17} \right)\).

Vì \(\frac{3}{5} \ne \frac{4}{{ - 2}}\), suy ra \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( { - 12;10; - 22} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&{ - 1}\\{ - 2}&7\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 1}&3\\7&5\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\5&{ - 2}\end{array}} \right|} \right) = \left( {26; - 26; - 26} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB}  = 26.\left( { - 12} \right) - 26.10 - 26.\left( { - 22} \right) = 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \)  đồng phẳng. Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {2;3; - 7} \right)\) và đi qua điểm \(A\left( {2; - 1;4} \right)\).

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( { - 6; - 9;21} \right)\) đi qua điểm \(B\left( { - 10; - 19;45} \right)\)

Ta có: \( - 3\overrightarrow {{u_1}}  = \left( { - 6; - 9;21} \right) = \overrightarrow {{u_2}} \) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( { - 12; - 18;41} \right)\), \(\frac{{ - 12}}{2} = \frac{{ - 18}}{3} \ne \frac{{41}}{{ - 7}}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {AB} \) không cùng phương. Vậy \({\Delta _1}\) //\({\Delta _2}\).

c) Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1;1;3} \right)\) và đi qua điểm \(A\left( { - 3;5;2} \right)\).

Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {5; - 2;7} \right)\) và đi qua điểm \(B\left( { - 13;9; - 13} \right)\).

Ta có: \(\frac{1}{5} \ne \frac{1}{{ - 2}}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( { - 10;4; - 15} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}1&3\\{ - 2}&7\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&1\\7&5\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&1\\5&{ - 2}\end{array}} \right|} \right) = \left( {13;8; - 7} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB}  = 13.\left( { - 10} \right) + 8.4 - 7.\left( { - 15} \right) = 7 \ne 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \) không đồng phẳng. Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)