Mặt cầu tâm I(−3; 0; 4) và đi qua điểm A(−3; 0; 0) có phương trình là
A. (x – 3)2 + y2 + (z + 4)2 = 4.
B. (x – 3)2 + y2 + (z + 4)2 = 16.
C. (x + 3)2 + y2 + (z − 4)2 = 16.
D. (x + 3)2 + y2 + (z − 4)2 = 4.
Mặt cầu tâm I(−3; 0; 4) và đi qua điểm A(−3; 0; 0) có phương trình là
A. (x – 3)2 + y2 + (z + 4)2 = 4.
B. (x – 3)2 + y2 + (z + 4)2 = 16.
C. (x + 3)2 + y2 + (z − 4)2 = 16.
D. (x + 3)2 + y2 + (z − 4)2 = 4.
Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(−2; 1; −1).
a) Chứng minh A, B, C, D là bốn đỉnh của một hình chóp.
b) Tìm góc giữa hai đường thẳng AB và CD.
c) Tính độ dài đường cao của hình chóp A.BCD.
Thảo luận (1)Hướng dẫn giảia) Ta có phương trình đoạn chắn của mặt phẳng $(\mathrm{ABC})$ là:
$$
\frac{x}{1}+\frac{y}{1}+\frac{z}{1}=1 \Leftrightarrow \mathrm{x}+\mathrm{y}+\mathrm{z}-1=0
$$Thay tọa độ điểm $D$ vào phương trình mặt phẳng $(\mathrm{ABC})$ ta được:
$$
-2+1-1-1=-3 \neq 0 \text { nên } D \notin(A B C) \text {. }
$$Do đó $A, B, C, D$ không đồng phẳng.
Suy ra A, B, C, D là bốn đỉnh của một hình chóp.
b) Đường thẳng AB nhận $\overrightarrow{A B}=(-1 ; 1 ; 0)$ làm vectơ chỉ phương.Đường thẳng CD nhận $\overrightarrow{C D}=(-2 ; 1 ;-2)$ làm vectơ chỉ phương.
$$
\cos (A B, C D)=\frac{|(-1) \cdot(-2)+1 \cdot 1+0 \cdot(-2)|}{\sqrt{(-1)^2+1^2} \cdot \sqrt{(-2)^2+1^2+(-2)^2}}=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$Suy ra $(A B, C D)=45^{\circ}$.
c) Có $\overrightarrow{B C}=(0 ;-1 ; 1), \overrightarrow{C D}=(-2 ; 1 ;-2),[\overrightarrow{B C}, \overrightarrow{C D}]=(1 ;-2 ;-2)$.Mặt phẳng $(\mathrm{BCD})$ đi qua $\mathrm{B}(0 ; 1 ; 0)$ và nhận $\vec{n}=[\overrightarrow{B C}, \overrightarrow{C D}]=(1 ;-2 ;-2)$ làm vectơ pháp tuyến có phương trình là $\mathrm{x}-2(\mathrm{y}$ $-1)-2 z=0 \Leftrightarrow x-2 y-2 z+2=0$.
Đường cao của hình chóp $A . B C D$ chính là khoảng cách từ $A$ đến mặt phẳng (BCD).
(Trả lời bởi datcoder)
Ta có $d(A,(B C D))=\frac{|1+2|}{\sqrt{1^2+(-2)^2+(-2)^2}}=1$
Cho bốn điểm A(−2; 6; 3), B(1; 0; 6), C(0; 2; −1), D(1; 4; 0).
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện.
b) Tính chiều cao AH của tứ diện ABCD.
c) Viết phương trình mặt phẳng (α) chứa AB và song song với CD.
Thảo luận (1)Hướng dẫn giảia) Ta có $\overrightarrow{B C}=(-1 ; 2 ;-7), \overrightarrow{B D}=(0 ; 4 ;-6),[\overrightarrow{B C}, \overrightarrow{B D}]=(16 ;-6 ;-4)$
Mặt phẳng $(B C D)$ đi qua $\mathrm{B}(1 ; 0 ; 6)$ và nhận $\vec{n}=\frac{1}{2}[\overrightarrow{B C}, \overrightarrow{B D}]=(8 ;-3 ;-2)$ có phương trình là $8(\mathrm{x}-1)-3 \mathrm{y}-2(\mathrm{z}-6)=0$ $\Leftrightarrow 8 \mathrm{x}-3 \mathrm{y}-2 \mathrm{z}+4=0$.
Thay tọa độ điểm A vào phương trình mặt phẳng (BCD) ta được:
$$
\text { 8. }(-2)-3.6-2.3+4=-36 \neq 0 \text {. }
$$Do đó $A \notin(B C D)$. Suy ra $A B C D$ là một tứ diện.
b) Ta có $A H=d(A,(B C D))=\frac{|8 .(-2)-3.6-2.3+4|}{\sqrt{8^2+(-3)^2+(-2)^2}}=\frac{36}{\sqrt{77}}$.
c) Ta có $\overrightarrow{A B}=(3 ;-6 ; 3)$ và $\overrightarrow{C D}=(1 ; 2 ; 1),[\overrightarrow{A B}, \overrightarrow{C D}]=(-12 ; 0 ; 12)$.Mặt phẳng (a) đi qua $\mathrm{A}(-2 ; 6 ; 3)$ và nhận $\vec{n}=-\frac{1}{12}[\overrightarrow{A B}, \overrightarrow{C D}]=(1 ; 0 ;-1)$ có phương trình là $(\mathrm{x}+2)-(\mathrm{z}-3)=0 \Leftrightarrow \mathrm{x}-\mathrm{z}+$ $5=0$.
(Trả lời bởi datcoder)
Phần mềm điều khiển máy in 3D cho biết đầu in phun của máy đang đặt tại điểm M(3; 4; 24) (đơn vị: cm). Tính khoảng cách từ đầu in đến khay đặt vật in có phương trình z – 4 = 0.
Thảo luận (1)Hướng dẫn giảiKhoảng cách từ đầu in đến khay đặt vật in là \(d = \frac{{\left| {0.3 + 0.4 + 1.24 - 4} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = 20\) (cm).
(Trả lời bởi datcoder)
Cho hai mặt phẳng (P): x – y – 6 = 0 và (Q). Biết rằng điểm H(2; −1; −2) là hình chiếu vuông góc của gốc tọa độ O(0; 0; 0) xuống mặt phẳng (Q). Tính góc giữa mặt phẳng (P) và mặt phẳng (Q).
Thảo luận (1)Hướng dẫn giảiDo \(H\left( {2; - 1; - 2} \right)\) là hình chiếu của \(O\) xuống mặt phẳng \(\left( Q \right)\) nên \(OH \bot \left( Q \right)\), suy ra \(\overrightarrow {OH} = \left( {2; - 1; - 2} \right)\) là một vectơ pháp tuyến của \(\left( Q \right)\).
Ta có \(\vec n = \left( {1; - 1;0} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).
Suy ra \(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow {OH} ,\vec n} \right)} \right| = \frac{{\left| {2.1 + \left( { - 1} \right).\left( { - 1} \right) + \left( { - 2} \right).0} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {0^2}} }} = \frac{{\sqrt 2 }}{2}.\)
Vậy \(\left( {\left( P \right),\left( Q \right)} \right) = {45^o}\)
(Trả lời bởi datcoder)
Phần mềm của máy tiện kĩ thuật số CNC (Computer Numerical Control) đang biểu diễn một chi tiết máy như Hình 2.
a) Tìm tọa độ các điểm A, B, C, D.
b) Viết phương trình mặt phẳng (ABC) và mặt phẳng (ACD).
c) Viết phương trình tham số của đường thẳng AC.
d) Cho biết đầu mũi tiện đang đặt tại điểm M(0; 60; 40). Tính khoảng cách từ M đến mặt phẳng (ABC).
Thảo luận (1)Hướng dẫn giảia) Dựa vào hình vẽ, ta có \(A\left( {70;0;0} \right)\), \(B\left( {70;0; - 60} \right)\), \(C\left( {70;80;0} \right)\) và \(D\left( {50;0;0} \right)\).
b) Mặt phẳng \(\left( {ABC} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AB} = \left( {0;0; - 60} \right)\) và \(\overrightarrow {AC} = \left( {0;80;0} \right)\) nên một vectơ pháp tuyến của \(\left( {ABC} \right)\) là \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4800;0;0} \right)\). Ta suy ra \(\vec i = \left( {1;0;0} \right) = \frac{1}{{4800}}\overrightarrow {{n_1}} \) cũng là một vectơ pháp tuyến của \(\left( {ABC} \right)\).
Vậy phương trình mặt phẳng \(\left( {ABC} \right)\) là \(1\left( {x - 70} \right) + 0\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0\), hay \(x - 70 = 0\).
Mặt phẳng \(\left( {ACD} \right)\) có cặp vectơ chỉ phương \(\overrightarrow {AC} = \left( {0;80;0} \right)\) và \(\overrightarrow {AD} = \left( { - 20;0;0} \right)\) nên một vectơ pháp tuyến của \(\left( {ACD} \right)\) là \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right] = \left( {0;0;1600} \right)\). Ta suy ra \(\vec k = \left( {0;0;1} \right) = \frac{1}{{1600}}\overrightarrow {{n_2}} \) cũng là một vectơ pháp tuyến của \(\left( {ACD} \right)\).
Vậy phương trình mặt phẳng \(\left( {ACD} \right)\) là \(0\left( {x - 70} \right) + 0\left( {y - 0} \right) + 1\left( {z - 0} \right) = 0\), hay \(z = 0\).
c) Ta có \(\overrightarrow {AC} = \left( {0;80;0} \right)\) là một vectơ chỉ phương của đường thẳng \(AC\). Ta suy ra vectơ \(\vec j = \left( {0;1;0} \right) = \frac{1}{{80}}\overrightarrow {AC} \) cũng là một vectơ chỉ phương của \(AC\)
Vậy phương trình tham số của \(AC\) là \(\left\{ \begin{array}{l}x = 70 + 0t\\y = 0 + t\\z = 0 + 0t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 70\\y = t\\z = 0\end{array} \right.\).
d) Khoảng cách từ điểm \(M\) đến \(\left( {ABC} \right)\) là
\(d\left( {M,\left( {ABC} \right)} \right) = \frac{{\left| {1.0 + 0.60 + 0.40 - 70} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 70.\)
(Trả lời bởi datcoder)
Cho hình hộp chữ nhật OABC.O'A'B'C', với O là gốc tọa độ, A(2; 0; 0), C(0; 6; 0), O'(0; 0; 4). Viết phương trình:
a) Mặt phẳng (O'AC);
b) Đường thẳng CO'
c) Mặt cầu đi qua các đỉnh của hình hộp.
Thảo luận (1)Hướng dẫn giảia) Ta thấy rằng các điểm \(A\left( {2;0;0} \right)\), \(C\left( {0;6;0} \right)\), \(O'\left( {0;0;4} \right)\) lần lượt thuộc các trục toạ độ \(Ox\), \(Oy\), \(Oz\), nên phương trình mặt phẳng \(\left( {O'AC} \right)\) là \(\frac{x}{2} + \frac{y}{6} + \frac{z}{4} = 1\), hay \(6x + 2y + 3z - 12 = 0\).
b) Ta có vectơ \(\overrightarrow {CO'} = \left( {0; - 6;4} \right)\) là vectơ chỉ phương của đường thẳng \(CO'\), nên phương trình đường thẳng \(CO'\) là \(\left\{ \begin{array}{l}x = 0 + 0t\\y = 6 - 6t\\z = 0 + 4t\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 0\\y = 6 - 6t\\z = 4t\end{array} \right.\)
c) Gọi \(I\) là giao điểm của \(OB'\) và \(O'B\). Ta thấy rằng \(I\) là trung điểm của \(OB'\) và \(O'B\).
Tứ giác \(O'A'BC\) là hình chữ nhật (tứ giác đó là hình bình hành, và hai đường chéo của tứ giác đó cũng là hai đường chéo của hình hộp chữ nhật), nên suy ra \(I\) cũng là trung điểm của \(A'C\). Chứng minh tương tự, ta có \(I\) là trung điểm của \(AC'\).
Vậy ta có điểm \(I\) cách đều 8 đỉnh của hình hộp chữ nhật, nên \(I\) chính là tâm mặt cầu \(\left( S \right)\) đi qua 8 đỉnh đó.
Ta có\(A\left( {2;0;0} \right)\), \(C\left( {0;6;0} \right)\) nên \(B\left( {2;6;0} \right)\).
Ta có \(I\) là trung điểm của \(O'B\) nên \(I\left( {1;3;2} \right)\).
Bán kính của mặt cầu \(\left( S \right)\) là \(R = OI = \sqrt {{1^2} + {3^2} + {2^2}} = \sqrt {14} \)
Vậy phương trình mặt cầu đi qua 8 đỉnh của hình hộp là
\({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 14\).
(Trả lời bởi datcoder)
Cho ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA2 = MB2 + MC2 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Thảo luận (1)Hướng dẫn giảiTa có
\(M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\), \(M{B^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2}\), \(M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)
Do \(M{A^2} = M{B^2} + M{C^2}\), nên
\({\left( {x - 1} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)
\( \Rightarrow - 2x + 1 = {x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2}\)
\( \Rightarrow {x^2} + 2x - 1 + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 0\)
\( \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\).
Vậy điểm \(M\) thuộc mặt cầu có tâm \(I\left( { - 1;2;3} \right)\) và bán kính \(R = \sqrt 2 .\)
(Trả lời bởi datcoder)