Bài tập cuối chương 5

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA2 = MB2 + MC2 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).

datcoder
30 tháng 10 lúc 14:12

Ta có

\(M{A^2} = {\left( {x - 1} \right)^2} + {y^2} + {z^2}\), \(M{B^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2}\), \(M{C^2} = {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)

Do \(M{A^2} = M{B^2} + M{C^2}\), nên

\({\left( {x - 1} \right)^2} + {y^2} + {z^2} = {x^2} + {\left( {y - 2} \right)^2} + {z^2} + {x^2} + {y^2} + {\left( {z - 3} \right)^2}\)

\( \Rightarrow  - 2x + 1 = {x^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2}\)

\( \Rightarrow {x^2} + 2x - 1 + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 0\)

\( \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 2\).

Vậy điểm \(M\) thuộc mặt cầu có tâm \(I\left( { - 1;2;3} \right)\) và bán kính \(R = \sqrt 2 .\)