Bài 5: Tính chất đường phân giác của một góc

Bài 31 (SGK - tập 2 trang 70)

Hướng dẫn giải

Hướng dẫn :

Theo cách vẽ thì M cách đều hai cạnh Ox, Oy (cùng bằng khoảng cách 2 lề của chiếc thước

Vì M cách đều Ox, Oy nên theo định lí đảo M thuộc phân giác của ˆxOyxOy^ hay OM là phân giác của ˆ

(Trả lời bởi Thien Tu Borum)
Thảo luận (1)

Bài 31 (SGK - tập 2 trang 70)

Hướng dẫn giải

Hướng dẫn :

Theo cách vẽ thì M cách đều hai cạnh Ox, Oy (cùng bằng khoảng cách 2 lề của chiếc thước

Vì M cách đều Ox, Oy nên theo định lí đảo M thuộc phân giác của ˆxOyxOy^ hay OM là phân giác của ˆ

(Trả lời bởi Thien Tu Borum)
Thảo luận (1)

Bài 32 (SGK - tập 2 trang 70)

Hướng dẫn giải

Hướng dẫn :

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC

( H ∈ AB, I ∈ BC, K ∈ AC)

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài)

MI = MK (Vì M thuộc phân giác của góc C ngoài)

Suy ra : MH = MK

=> M thuộc phân giác của góc ˆBACBAC^

(Trả lời bởi Thien Tu Borum)
Thảo luận (2)

Luyện tập - Bài 33 (SGK - tập 2 trang 70)

Hướng dẫn giải

Hướng dẫn:

a) Vì Ot là phân giác của ˆxOyxOy^

nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^

Ot' là phân giác của ˆxOy′xOy′^

nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)

mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)

=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900

Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông

b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'

Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy

=> M cách đều xx',yy'

M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'

=> M cách đều xx',yy'

c) M cách đều hai đường thẳng xx', yy'

Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'

d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0

e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.

(Trả lời bởi Thien Tu Borum)
Thảo luận (2)

Luyện tập - Bài 34 (SGK - tập 2 trang 71)

Hướng dẫn giải

a) ∆AOD và ∆COB có:

OC =OA (gt)

OB = OD (gt)

xOy^ là góc chung

=> ∆AOD = ∆COB (cgc)

=> AD = BC

b) ∆AOD = ∆COB => AOD^=OCB^

=> BAI^=DCI^ (kề bù với hai góc bằng nhau)

Vì vậy ∆DIC = ∆BIA do:

CD = AB ( OD = OB; OC = OA)

DCI^=ABI^ ( ∆AOD = ∆COB)

BAI^=DCI^ (chứng minh trên)

=> IC = IA và ID = IB

c) Ta có ∆OAI = ∆OIC (c.c.c)=> COI^=AOI^

=> OI là phân giác của

(Trả lời bởi Tuyết Nhi Melody)
Thảo luận (2)

Luyện tập - Bài 34 (SGK - tập 2 trang 71)

Hướng dẫn giải

a) ∆AOD và ∆COB có:

OC =OA (gt)

OB = OD (gt)

xOy^ là góc chung

=> ∆AOD = ∆COB (cgc)

=> AD = BC

b) ∆AOD = ∆COB => AOD^=OCB^

=> BAI^=DCI^ (kề bù với hai góc bằng nhau)

Vì vậy ∆DIC = ∆BIA do:

CD = AB ( OD = OB; OC = OA)

DCI^=ABI^ ( ∆AOD = ∆COB)

BAI^=DCI^ (chứng minh trên)

=> IC = IA và ID = IB

c) Ta có ∆OAI = ∆OIC (c.c.c)=> COI^=AOI^

=> OI là phân giác của

(Trả lời bởi Tuyết Nhi Melody)
Thảo luận (2)

Luyện tập - Bài 35 (SGK - tập 2 trang 71)

Hướng dẫn giải

Hướng dẫn:

+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B

+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.

+ Phần chứng minh tương tự như bài 34

(Trả lời bởi Thien Tu Borum)
Thảo luận (3)

Bài 40 (Sách bài tập - tập 2 - trang 44)

Hướng dẫn giải

 

Kẻ MH vuông góc với Ox, MK vuông góc với Oy

=>MH và MK là chiều rộng của thước hai lề

=>MH=MK

=>M thuộc tia phân giác của góc xOy

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 41 (Sách bài tập - tập 2 - trang 44)

Hướng dẫn giải

Gọi K là giao điểm của hai đường phân giác góc ngoài tại B và C

Kẻ KE,KD,KF vuông góc lần lượt với BC,AB,AC

Xét ΔBDK vuông tại D và ΔBEK vuông tại E có

KB chung

\(\widehat{DBK}=\widehat{EBK}\)

Do đó: ΔBDK=ΔBEK

Suy ra: KD=KE(1)

Xét ΔCEK vuông tại E và ΔCFK vuông tại F có

CK chung

\(\widehat{ECK}=\widehat{FCK}\)

Do đó;ΔCEK=ΔCFK

Suy ra: KE=KF(2)

Từ (1) và (2) suy ra KD=KF

hay K nằm trên đường phân giác của góc A(Đpcm)

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 42 (Sách bài tập - tập 2 - trang 45)

Hướng dẫn giải

D cách đều hai cạnh của góc B nên D nằm trên đường phân giác của góc ABC

D nằm trên đường trung tuyến AM.

Vậy D là giao điểm của đường phân giác của góc ABC và đường trung tuyến AM.

Ta có hình vẽ:



(Trả lời bởi Phạm Thảo Vân)
Thảo luận (1)