Ở lớp 10, khi học về chuyển động của vật, ta đã biết có sự chuyển hoá giữa động năng và thế năng của vật. Vậy trong dao động điều hoà có sự chuyển hoá tương tự không?
Ở lớp 10, khi học về chuyển động của vật, ta đã biết có sự chuyển hoá giữa động năng và thế năng của vật. Vậy trong dao động điều hoà có sự chuyển hoá tương tự không?
Hình 5.3 là đồ thị động năng và thế năng của một vật dao động điều hòa li độ. Hãy phân tích sự chuyển hóa giữa động năng và thế năng bằng đồ thị.
Thảo luận (1)Hướng dẫn giảiKhi vật di chuyển từ biên âm đến vị trí cân bằng thì thế năng giảm động năng tăng và ngược lại.
Khi vật đi chuyển từ vị trí cân bằng đến biên dương thì thế năng tăng động năng giảm và ngược lại.
Vật đạt động năng cực đại khi ở vị trí cân bằng và cực tiểu khi ở vị trí biên còn thế năng thì ngược lại.
(Trả lời bởi Quoc Tran Anh Le)
Hình 5.4 là đồ thị động năng và thế năng của một vật dao động điều hòa theo thời gian.
a) Động năng và thế năng của vật thay đổi như thế nào trong các khoảng thời gian: từ 0 đến \(\dfrac{T}{4}\), từ \(\dfrac{T}{4}\) đến \(\dfrac{T}{2}\), từ \(\dfrac{T}{2}\) đến \(\dfrac{3T}{4}\), từ \(\dfrac{3T}{4}\) đến T.
b) Tại các thời điểm: t = 0; \(t=\dfrac{T}{8};t=\dfrac{T}{4};t=\dfrac{3T}{4}\), động năng và thế năng của vật có giá trị như thế nào (tính theo W). Nghiệm lại để thấy ở mỗi thời điểm đó Wđ + Wt = W.
Thảo luận (1)Hướng dẫn giảia) Từ 0 đến \(\frac{T}{4}\): Wđ tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{4}\), Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{4}\).
Từ \(\frac{T}{4}\)đến \(\frac{T}{2}\): Wđ giảm từ giá trị lớn nhất về 0 tại \(\frac{T}{2}\), Wt tăng từ 0 đến giá trị lớn nhất tại \(\frac{T}{2}\).
Từ \(\frac{T}{2}\)đến \(\frac{{3T}}{4}\): Wđ tăng từ 0 đạt giá trị lớn nhất tại \(\frac{{3T}}{4}\),Wt giảm từ giá trị lớn nhất về 0 tại \(\frac{{3T}}{4}\).
Từ \(\frac{{3T}}{4}\)đến T: Wđ giảm từ giá trị lớn nhất về 0 tại T, Wt tăng từ 0 đến giá trị lớn nhất tại T.
b) Tại thời điểm t = 0: Wđ = 0, Wt = W.
Tại thời điểm t = \(\frac{T}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).
Tại thời điểm t = \(\frac{T}{4}\): Wđ = W, Wt = 0.
Tại thời điểm t = \(\frac{{3T}}{8}\): Wđ = Wt = \(\frac{{\rm{W}}}{2}\).
→ ở mỗi thời điểm trên ta đều có: Wđ + Wt = W.
(Trả lời bởi Quoc Tran Anh Le)
Làm thí nghiệm để xác nhận rằng khi góc lệch α0 ≤ 10o thì chu kì của con lắc đơn gần như không phụ thuộc vào biên độ dao động.
Thảo luận (1)Hướng dẫn giảiVị trí của con lắc đơn được xác định bằng li độ dài s hay li độ góc α
Thế năng của con lắc đơn là thế năng trọng trường.
Chọn mốc tính thế năng ở vị trí cân bằng thì thế năng của con lắc ở li độ góc α là: Wt = mgl(1-cosα)
mà (1-cosα)=2\({\sin ^2}\frac{\alpha }{2}\) với α0 ≤ 10o thì\(\sin \frac{\alpha }{2} \approx \frac{\alpha }{2}\) (α tính theo rad)
Khi đó Wt = mgl\(\frac{{{\alpha ^2}}}{2}\) với α =\(\frac{s}{l}\) suy ra: Wt = mgl\(\frac{{{s^2}}}{{2{l^2}}}\)=\(\frac{1}{2}\)m\(\frac{g}{l}\)s2
Tại vị trí biên độ có Wt = W nên ta có \(\frac{1}{2}m\frac{g}{l}{s^2} = \frac{1}{2}m{\omega ^2}{A^2}\)
\( \to \omega = \sqrt {\frac{g}{l}} \to T = 2\pi \sqrt {\frac{l}{g}} \)
vậy với góc lệch α0 ≤ 10° thì chu kì của con lắc đơn gần như không phụ thuộc vào biên độ dao động
(Trả lời bởi Quoc Tran Anh Le)
Một con lắc lò xo có độ cứng k và vật nặng có khối lượng m.
1. Tính chu kì
2. Đo chu kì T bằng đồng hồ. So sánh kết quả tính ở câu 1.
Thảo luận (1)Hướng dẫn giảiTham khảo:
1. Chu kì của con lắc lò xo là: \(T=2\pi\sqrt{\dfrac{m}{k}}\)
2. Gắn vật nặng vào lò xo rối treo theo phương thẳng đứng để tạo được một con lắc lò xo rồi treo theo phương thẳng đứng để tạo được một con lắc lò xo như Hình 1.1a SGK. Dùng đồng hồ bấm giây kết hợp với đếm số chu kì (n) con lắc thực hiện được trong thời gian Δt tương ứng. Xác định chu ki của con lắc T=Δtn, để so sánh với kết quả chu kì T tính theo công thức ở câu a
(Trả lời bởi HT.Phong (9A5))
Một con lắc lò xo có vật nặng khối lượng 0,4 kg, dao động điều hòa. Đồ thị vận tốc v theo thời gian t như hình 5.7. Tính:
a) Vận tốc cực đại của vật.
b) Động năng cực đại của vật.
c) Thế năng cực đại của con lắc.
d) Độ cứng k của lò xo.
Thảo luận (1)Hướng dẫn giảiTừ đồ thị ta có T = 1,2s → \(\omega = \frac{{2\pi }}{T} = \frac{5}{3}\pi \) (rad/s)
a) Vận tốc cực đại của vật vmax = 0,3 cm/s= 0,003 m/s = ωA → A = 0.0006 (m)
b) Động năng cực đại của vật là Wđmax = = 2.10−6 (J)
c) Theo định luật bảo toàn cơ năng ta có Wtmax = Wđmax = 2.10−6 (J)
d) Độ cứng k của lò xo tính theo công thức: T = \(2\pi \sqrt {\frac{m}{k}} \) → k≈11N/m
(Trả lời bởi Quoc Tran Anh Le)
Một con lắc lò xo có độ cứng k = 100 N/m, vật nặng có khối lượng m = 200 g, dao động điều hòa với biên độ A = 5 cm.
a) Xác định li độ của vật tại thời điểm động năng của vật bằng 3 lần thế năng của con lắc.
b) Xác định tốc độ của vật khi qua vị trí cân bằng.
c) Xác định thế năng của con lắc khi vật có li độ x = -2,5 cm
Thảo luận (1)Hướng dẫn giải`a)W_đ =3W_t`
`=>W=4W_t`
`<=>1/2 kA^2 = 4. 1/2 kx^2`
`<=>1/4 A^2=x^2`
`<=>x=+-1/2A`
`b)\omega =\sqrt{k/m}=\sqrt{100/[0,2]}=10\sqrt{5}(rad//s)`
`=>v_[max]=A.\omega=50\sqrt{5}(cm//s)`
`c)W_t=1/2kx^2=1/2 .100 .(-0,025)^2=0,03125(J)`
(Trả lời bởi 2611)