Bài 3: Phương trình mặt cầu

Bài tập 3 (SGK Cánh Diều - Tập 2 - Trang 86)

Hướng dẫn giải

Mặt cầu S tâm I(-5; -2; 3) bán kính 4 có pt trình là:

\(\left[x-\left(-5\right)\right]^2+\left[y-\left(-2\right)\right]^2+\left(z-3\right)^2=4^2\\ \Leftrightarrow\left(x+5\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=16\) 

=> Chọn D 

(Trả lời bởi Phong)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 2 - Trang 86)

Hướng dẫn giải

a) Ta có: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 7} \right)^2} = 100\)

\( \Leftrightarrow {\left( {x - 1} \right)^2} + {\left( {y - \left( { - 2} \right)} \right)^2} + {\left( {z - 7} \right)^2} = {10^2}\)

Do đó, mặt cầu đã cho có tâm I(1; -2; 7) và bán kính \(R = 10\).

b) Ta có: \(IA = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {1 - 7} \right)}^2}}  = \sqrt {45}  < R\) nên điểm A nằm trong mặt cầu đã cho.

\(IB = \sqrt {{{\left( {9 - 1} \right)}^2} + {{\left( {4 - \left( { - 2} \right)} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 10 = R\) nên điểm B nằm trên mặt cầu đã cho.

\(IC = \sqrt {{{\left( {9 - 1} \right)}^2} + {{\left( {9 - \left( { - 2} \right)} \right)}^2} + {{\left( {10 - 7} \right)}^2}}  = \sqrt {194}  > R\) nên điểm C nằm ngoài mặt cầu đã cho.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 5 (SGK Cánh Diều - Tập 2 - Trang 86)

Hướng dẫn giải

Ta có: \({x^2} + {y^2} + {z^2} - 4x - 2y - 10z + 2 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2.x.2 - 2.y.1 - 2.z.5 + 2 = 0\)

\( \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 5} \right)^2} = 28\).

Do đó, phương trình đã cho là phương trình mặt cầu có tâm I(2; 1; 5) và bán kính \(R = \sqrt {28}  = 2\sqrt 7 \).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 2 - Trang 86)

Hướng dẫn giải

a) (S) có tâm I(3; -7; 1), bán kính \(R = 2\) có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} + {\left( {z - 1} \right)^2} = 4\).

b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {2 + 5} \right)}^2}}  = \sqrt {74} \) nên phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 74\).

c) Gọi I là trung điểm của CD nên \(I\left( { - 1; - 1;\frac{1}{2}} \right)\).

Vì mặt cầu (S) có đường kính là CD nên (S) có tâm \(I\left( { - 1; - 1;\frac{1}{2}} \right)\), bán kính \(R = IC = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - \frac{1}{2}} \right)}^2}}  = \frac{{\sqrt {41} }}{2}\).

Do đó, phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{{41}}{4}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 7 (SGK Cánh Diều - Tập 2 - Trang 86)

Hướng dẫn giải

Gọi M(x; y; z).

Ta có: \(MA = \sqrt {{{\left( {3 - x} \right)}^2} + {{\left( { - 1 - y} \right)}^2} + {{\left( {6 - z} \right)}^2}}  = 6\);

\(MB = \sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {4 - y} \right)}^2} + {{\left( {8 - z} \right)}^2}}  = 7\);

\(MC = \sqrt {{{\left( {7 - x} \right)}^2} + {{\left( {9 - y} \right)}^2} + {{\left( {6 - z} \right)}^2}}  = 12\);

\(MD = \sqrt {{{\left( {7 - x} \right)}^2} + {{\left( { - 15 - y} \right)}^2} + {{\left( {18 - z} \right)}^2}}  = 24\).
Ta có hệ phương trình: \(\left\{ \begin{array}{l}{\left( {3 - x} \right)^2} + {\left( { - 1 - y} \right)^2} + {\left( {6 - z} \right)^2} = 36\left( 1 \right)\\{\left( {1 - x} \right)^2} + {\left( {4 - y} \right)^2} + {\left( {8 - z} \right)^2} = 49\left( 2 \right)\\{\left( {7 - x} \right)^2} + {\left( {9 - y} \right)^2} + {\left( {6 - z} \right)^2} = 144\left( 3 \right)\\{\left( {7 - x} \right)^2} + {\left( { - 15 - y} \right)^2} + {\left( {18 - z} \right)^2} = 576\left( 4 \right)\end{array} \right.\)

Trừ vế với vế của (3) và (1) ta có: \({\left( {7 - x} \right)^2} - {\left( {3 - x} \right)^2} + {\left( {9 - y} \right)^2} - {\left( { - 1 - y} \right)^2} = 144 - 36\)

\( \Leftrightarrow  - 8x - 20y =  - 12 \Leftrightarrow x = \frac{{3 - 5y}}{2}\left( 5 \right)\).

Trừ vế với vế của (4) và (3) ta có: \({\left( { - 15 - y} \right)^2} - {\left( {9 - y} \right)^2} + {\left( {18 - z} \right)^2} - {\left( {6 - z} \right)^2} = 576 - 144\)

\( \Leftrightarrow 48y - 24z = 0 \Leftrightarrow z = 2y\left( 6 \right)\).

Thay (5) và (6) vào (2) ta có: \({\left( {1 - \frac{{3 - 5y}}{2}} \right)^2} + {\left( {4 - y} \right)^2} + {\left( {8 - 2y} \right)^2} = 49\)

\( \Leftrightarrow 45{y^2} - 170y + 125 = 0 \Leftrightarrow y = 1\) hoặc \(y = \frac{{25}}{9}\).

+ Với \(y = 1\) ta có: \(x =  - 1;z = 2\). Khi đó, M(-1; 1; 2). Thay tọa độ của M vào các phương trình (1), (2), (3), (4) ta thấy thỏa mãn.

+ Với \(y = \frac{{25}}{9}\) ta có: \(x =  - \frac{{49}}{9};z = \frac{{50}}{9}\). Khi đó, \(M\left( {\frac{{ - 49}}{9};\frac{{25}}{9};\frac{{50}}{9}} \right)\). Thay tọa độ của M vào các phương trình (1) ta thấy không thỏa mãn.

Vậy điểm M(-1; 1; 2) thỏa mãn yêu cầu đề bài.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)