Bài 3: Phương trình mặt cầu

Khởi động (SGK Cánh Diều - Tập 2 - Trang 81)

Hướng dẫn giải

Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu tâm I(a; b; c) bán kính R là: \(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} = R\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều - Tập 2 - Trang 81)

Hướng dẫn giải

Khi quay đường tròn tâm I bán kính R quanh đường kính AB một vòng thì điểm thuộc mặt cầu đó cách I một khoảng bằng R.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 1 (SGK Cánh Diều - Tập 2 - Trang 82)

Hướng dẫn giải

Vì mặt cầu tâm I đi qua điểm A nên IA là bán kính của mặt cầu.

Bán kính của mặt cầu là: \(R = IA = \sqrt {{{\left( {0 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2} + {{\left( {5 - 3} \right)}^2}} = 3\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều - Tập 2 - Trang 83)

Hướng dẫn giải

a) Công thức tính khoảng cách giữa hai điểm M và I là: \(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} \).

b) Để M nằm trên mặt cầu tâm I bán kính R thì \(IM = R\) hay \(\sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2} + {{\left( {z - c} \right)}^2}} = R\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 2 (SGK Cánh Diều - Tập 2 - Trang 83)

Hướng dẫn giải

Ta có: \({x^2} + {\left( {y + 5} \right)^2} + {\left( {z + 1} \right)^2} = 2 \Leftrightarrow {x^2} + {\left[ {y - \left( { - 5} \right)} \right]^2} + {\left[ {z - \left( { - 1} \right)} \right]^2} = {\left( {\sqrt 2 } \right)^2}\)

Mặt cầu có tâm I(0; -5; -1) và bán kính \(R = \sqrt 2 \).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 3 (SGK Cánh Diều - Tập 2 - Trang 83)

Hướng dẫn giải

a) Mặt cầu có tâm O(0; 0; 0) bán kính R có phương trình là: \({x^2} + {y^2} + {z^2} = {R^2}\)

b) Gọi là trung điểm của AB nên I(2; 3; 4). Do đó, mặt cầu đường kính AB có tâm là I(2; 3; 4) và bán kính \(AI = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {3 - 2} \right)}^2} + {{\left( {4 - 1} \right)}^2}} = \sqrt {11} \) nên có phương trình là:

\({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 4} \right)^2} = 11\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 4 (SGK Cánh Diều - Tập 2 - Trang 83)

Hướng dẫn giải

Ta có: \({x^2} + {y^2} + {z^2} - 6x - 2y - 4z - 11 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2.x.3 - 2.y.1 - 2.z.2 - 11 = 0\)

\( \Leftrightarrow {\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 5 (SGK Cánh Diều - Tập 2 - Trang 85)

Hướng dẫn giải

Đường thẳng ID đi qua điểm I và nhận \(\overrightarrow {ID}  = \left( {5\;100;623; - 50} \right)\) làm một vectơ chỉ phương nên phương trình tham số đường thẳng ID là: \(\left\{ \begin{array}{l}x = 21 + 5\;100t\\y = 35 + 623t\\z = 50 - 50t\end{array} \right.\) (t là tham số).

Gọi H là vị trí cuối cùng trên đoạn ID sao cho người đi biển có thể nhìn thấy ánh sáng từ ngọn hải đăng. Khi đó, \(IH = R\)

Vì H thuộc đường thẳng ID nên \(H\left( {21 + 5\;100t;35 + 623t;50 - 50t} \right)\)

Ta có: \(IH = R \Leftrightarrow \sqrt {{{\left( {5100t} \right)}^2} + {{\left( {623t} \right)}^2} + {{\left( { - 50t} \right)}^2}}  = 4000 \Leftrightarrow \sqrt {26\;400\;629{t^2}}  = 4000\)

\( \Leftrightarrow t \approx  \pm 0,78\)

+ Với \(t \approx 0,78\) ta có H(3 999; 520,94; 11), \(\overrightarrow {IH}  = \left( {3\;978;485,94; - 39} \right)\). Khi đó, \(\overrightarrow {ID}  = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ ID và IH cùng hướng, thỏa mãn H thuộc đoạn thẳng ID.

+ Với \(t \approx  - 0,78\) ta có H(-3 999; -450,94; 89), \(\overrightarrow {IH}  = \left( { - 3\;978; - 485,94;39} \right)\). Khi đó, \(\overrightarrow {ID}  =  - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ ID và IH ngược hướng, vậy H không thuộc đoạn thẳng ID.

Vậy ví trị cuối cùng trên đoạn thẳng ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm H(3 999; 520,94; 11).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 1 (SGK Cánh Diều - Tập 2 - Trang 85)

Hướng dẫn giải

Ta có mặt cầu (S) 

\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z+4\right)^2=16\\ \Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+\left[z-\left(-4\right)\right]^2=16\)

=> Tâm của mặt cầu \(I\left(2;3;-4\right)\)

=> Chọn B 

(Trả lời bởi Phong)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 2 - Trang 85)

Hướng dẫn giải

Bán kính của mặt cầu (S) là:

\(\sqrt{9}=3\)

=> Chọn A 

(Trả lời bởi Phong)
Thảo luận (1)