Áp dụng quy tắc nhân các căn bậc hai, hãy tính :
a) \(\sqrt{10}.\sqrt{40}\)
b) \(\sqrt{5}.\sqrt{45}\)
c) \(\sqrt{52}.\sqrt{13}\)
d) \(\sqrt{2}.\sqrt{162}\)
Áp dụng quy tắc nhân các căn bậc hai, hãy tính :
a) \(\sqrt{10}.\sqrt{40}\)
b) \(\sqrt{5}.\sqrt{45}\)
c) \(\sqrt{52}.\sqrt{13}\)
d) \(\sqrt{2}.\sqrt{162}\)
Áp dụng quy tắc khai phương một tích, hãy tính :
a) \(\sqrt{45.80}\)
b) \(\sqrt{75.48}\)
c) \(\sqrt{90.6,4}\)
d) \(\sqrt{2,5.14,4}\)
Thảo luận (2)Hướng dẫn giảia)\(\sqrt{45.80}=\sqrt{9.400}=\sqrt{9}.\sqrt{400}=3.20=60\)
b) \(\sqrt{75.48}=\sqrt{25.3.16.3}=\sqrt{5^2.3^2.4^2}=5.4.3=60\)
c)\(\sqrt{90.6,4}=\sqrt{10.9.4.1,6}=\sqrt{4^2.3^2.2^2}=4.3.2=24\)
d) \(\sqrt{2,5.14,4}=\sqrt{\dfrac{25}{10}.\dfrac{144}{10}}=\sqrt{\dfrac{25.144}{100}}=\sqrt{\left(\dfrac{5.12}{10}\right)^2}=\dfrac{5.12}{10}=6\)
(Trả lời bởi Bảo)
Rút gọn rồi tính :
a) \(\sqrt{6,8^2-3,2^2}\)
b) \(\sqrt{21,8^2-18,2^2}\)
c) \(\sqrt{117,5^2-26,5^2-1440}\)
d) \(\sqrt{146,5^2-109,5^2+27.256}\)
Thảo luận (2)Hướng dẫn giải\(a=\sqrt{\left(6,8-3,2\right)\left(6,8+3,2\right)}=\sqrt{3,6\left(10\right)}=\sqrt{36}=6\)
(Trả lời bởi ngonhuminh)
Chứng minh :
a) \(\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=8\)
b) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Thảo luận (1)Hướng dẫn giảia) \(VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
=\(\sqrt{9^2-\left(\sqrt{17}\right)^2}=\sqrt{81-17}=\sqrt{64}=8=VP\)
b) \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)
(Trả lời bởi Nguyễn Võ Văn Hùng)
Rút gọn :
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Thảo luận (3)Hướng dẫn giảib) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)
(Trả lời bởi Mysterious Person)
So sánh (không dùng bảng số hay máy tính bỏ túi )
a) \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)
b) \(\sqrt{3}+2\) và \(\sqrt{2}+\sqrt{6}\)
c) \(16\) và \(\sqrt{15}.\sqrt{17}\)
d) \(8\) và \(\sqrt{15}+\sqrt{17}\)
Thảo luận (1)Hướng dẫn giải
So sánh (không dùng bảng số hay máy tính bỏ túi)
\(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)
Thảo luận (2)Hướng dẫn giảiĐặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
(Trả lời bởi Lưu Hạ Vy)
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B
Cho các biểu thức :
\(A=\sqrt{x+2}.\sqrt{x-3}\) và \(B=\sqrt{\left(x+2\right)\left(x-3\right)}\)
a) Tìm \(x\) để A có nghĩa. Tìm \(x\) để B có nghĩa
b) Với giá trị nào của \(x\) thì A = B ?
Thảo luận (1)Hướng dẫn giải
Biểu diễn \(\sqrt{ab}\) ở dạng tích các căn bậc hai với \(a< 0;b< 0\)
Áp dụng tính \(\sqrt{\left(-25\right)\left(-64\right)}\)
Thảo luận (1)Hướng dẫn giảiDo a và b âm nên -a và -b dương
Khi đó , ta có: \(\sqrt{a.b}=\sqrt{\left(-a\right)\left(-b\right)}=\sqrt{-a}.\sqrt{-b}\)
Áp dụng , ta có: \(\sqrt{\left(-25\right)\left(-64\right)}=\sqrt{25}.\sqrt{64}=5.8=40\)
(Trả lời bởi katherina)
Rút gọn các biểu thức :
a) \(\sqrt{4\left(a-3\right)^2}\) với \(a\ge3\)
b) \(\sqrt{9\left(b-2\right)^2}\) với \(b< 2\)
c) \(\sqrt{a^2\left(a+1\right)^2}\) với \(a>0\)
d) \(\sqrt{b^2\left(b-1\right)^2}\) với \(b< 0\)
Thảo luận (1)Hướng dẫn giảia. \(\sqrt{4\left(a-3\right)^2}=2.|a-3|=2\left(a-3\right)\) (vì a \(\ge3\) nên a-3\(\ge\) 0. Do đó: \(|a-3|=a-3\))
b. \(\sqrt{9\left(b-2\right)^2}=3.|b-2|=3\left(2-b\right)\) (vì b < 2 nên b-2 < 0. Do đó : \(|b-2|=2-b\))
c. \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)\) ( vì a > 0)
d. \(\sqrt{b^2\left(b-1\right)^2}=b\left(b-1\right)\) (vì b < 0)
(Trả lời bởi katherina)