Vẽ đồ thị các hàm số sau:
a) \(y = {4^x}\);
b) \(y = {\left( {\frac{1}{4}} \right)^x}\).
Vẽ đồ thị các hàm số sau:
a) \(y = {4^x}\);
b) \(y = {\left( {\frac{1}{4}} \right)^x}\).
So sánh các cặp số sau:
a) \(1,{3^{0,7}}\) và \(1,{3^{0,6}}\);
b) \(0,{75^{ - 2,3}}\) và \(0,{75^{ - 2,4}}\).
Thảo luận (2)Hướng dẫn giảia) Vì \(1,3>1\) nên hàm số \(y=1,3^x\) là hàm số đồng biến trên \(\mathbb{R}.\)
Mà \(0,7>0,6\) nên \(1,3^{0,7}>1,3^{0,6}\)
b) Vì \(0,75< 1\) nên hàm số là hàm số nghịch biến trên \(\mathbb{R}.\)
Mà \(-2,3>-2,4\) nên \(0,75^{-2,3}>0,75^{-2,4}\)
(Trả lời bởi Mai Trung Hải Phong)
Tìm tập xác định của các hàm số:
a) \({\log _2}\left( {3 - 2{\rm{x}}} \right)\);
b) \({\log _3}\left( {{x^2} + 4{\rm{x}}} \right)\).
Thảo luận (1)Hướng dẫn giảia) \(log_2\left(3-2x\right)\) xác định khi \(3-2x>0\) hay \(x< \dfrac{3}{2}\)
b) \(log_3\left(x^2+4x\right)\) xác định khi \(x^2+4x>0\) hay \(x>0\) hoặc \(x< -4\)
(Trả lời bởi Mai Trung Hải Phong)
Vẽ đồ thị các hàm số:
a) \(y = \log x\);
b) \(y = {\log _{\frac{1}{4}}}x\).
Thảo luận (1)Hướng dẫn giải
So sánh các cặp số sau:
a) \({\log _\pi }0,8\) và \({\log _\pi }1,2\);
b) \({\log _{0,3}}2\) và \({\log _{0,3}}2,1\);
Thảo luận (1)Hướng dẫn giảia) Vì \(\pi>1\) nên hàm số \(log_{\pi}x\) đồng biến trên\(\left(0;+\infty\right)\)
Mà \(0,8< 1,2\) nên \(log_{\pi}0,8< log_{\pi}1,2\)
b) Vì \(0,3>1\) nên hàm số \(log_{0,3}x\) nghịch biến trên \(\left(0;+\infty\right)\)
Mà \(2<2,1\) nên \(log_{0,3}2>log_{0,3}2,1\) (Trả lời bởi Mai Trung Hải Phong)
Cường độ ánh sáng \(I\) dưới mặt biển giảm dần theo độ sâu theo công thức \(I = {I_0}.{a^d}\), trong đó \({I_0}\) là cường độ ánh sáng tại mặt nước biển, \(a\) là hằng số \(\left( {a > 0} \right)\) và \(d\) là độ sâu tính bằng mét tính từ mặt nước biển.
(Nguồn: https://www.britannica.com/science/seawer/Optical-properties)
a) Có thể khẳng định rằng \(0 < a < 1\) không? Giải thích.
b) Biết rằng cường độ ánh sáng tại độ sâu 1 m bằng \(0,95{I_0}\). Tìm giá trị của \(a\).
c) Tại độ sâu 20 m, cường độ ánh sáng bằng bao nhiêu phần trăm so với \({I_0}\)? (Làm tròn kết quả đến hàng đơn vị.)
Thảo luận (1)Hướng dẫn giảia, Vì cường độ ánh sáng giảm dần theo độ sâu nên hàm số \(I=I_0\cdot a^d\) nghịch biến.
Vậy 0 < a < 1.
b, Ta có: \(I=I_0\cdot a^d\Rightarrow0,95I_0=I_0\cdot a^1\Leftrightarrow a=0,95\)
c, Ta có: \(I=I_0\cdot a^d=I_0\cdot0,95^{20}\approx0,36I_0\)
Vậy tại độ sâu 20m, cường độ ánh sáng bằng 36% so với \(I_0\)
(Trả lời bởi Hà Quang Minh)
Công thức \(h = - 19,4.\log \frac{P}{{{P_0}}}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa\) – đơn vị áp suất, đọc là Pascal).
(Nguồn: https://doi.org/10.1007/s40828-020-0111-6)
a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao nào?
b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. Ngọn núi nào cao hơn và cao hơn bao nhiêu kilômét? (Làm tròn kết quả đến hảng phần mười.)
Thảo luận (1)Hướng dẫn giảia, Độ cao của máy bay khi áp suất không khí ngoài máy bay bằng \(\dfrac{1}{2}P_0\) là:
\(h=-19,4\cdot log\dfrac{\dfrac{1}{2}P_0}{P_0}=-10,4\cdot log\dfrac{1}{2}\approx5,84\left(km\right)\)
b, Độ cao của ngọn núi A là: \(h_A=-19,4\cdot log\dfrac{P_A}{P_0}\)
Độ cao của ngọn núi B là: \(h_B=-19,4\cdot log\dfrac{P_B}{P_0}\)
Áp suất không khí tại đỉnh của ngọn núi A bằng \(\dfrac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B nên ta có: \(P_A=\dfrac{4}{5}P_B\Rightarrow\dfrac{P_A}{P_B}=\dfrac{4}{5}\)
Ta có:
\(h_A-h_B=\left(-19,4\cdot log\dfrac{P_A}{P_0}\right)-\left(-19,4\cdot log\dfrac{P_B}{P_0}\right)\\ =-19,4\cdot log\dfrac{P_A}{P_0}+19,4\cdot log\dfrac{P_B}{P_0}\\ =-19,4\cdot log\dfrac{P_A}{P_B}\\ =-19,4\cdot log\dfrac{4}{5}\approx1,88\left(km\right)\)
Vậy ngọn núi A cao hơn ngọn núi B 1,88km.
(Trả lời bởi Hà Quang Minh)