Bài 18. Xác suất có điều kiện

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống - Trang 65)

Hướng dẫn giải

Gọi A là biến cố: “Tùng lấy được bút bi xanh”, B là biến cố: “Sơn lấy được bút bi đen”.

Sơn có 12 cách chọn, Tùng có 11 cách chọn một chiếc bút bi trong hộp.

Do đó, \(n\left( \Omega  \right) = 12.11 = 132\)

Sơn có 5 cách chọn bút bi đen, Tùng có 11 cách chọn bút bi xanh từ 11 bút bi còn lại.

Do đó, \(n\left( B \right) = 5.11 = 55\) và \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}}\)

Sơn có 5 cách chọn bút bi đen, Tùng có 7 cách chọn bút bi xanh từ 11 bút bi còn lại.

Do đó, \(n\left( {AB} \right) = 5.7 = 35\) và \(P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega  \right)}}\)

Vậy xác suất để Tùng lấy được bút bi xanh nếu Sơn lấy được bút bi đen là: \(P = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{n\left( {AB} \right)}}{{n\left( B \right)}} = \frac{{35}}{{55}} = \frac{7}{{11}}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống - Trang 66)

Hướng dẫn giải

Cách 1: Bằng định nghĩa

Nếu \(\overline B \) xảy ra tức là Bình lấy được viên bi đen. Khi đó, trong hộp còn lại 29 viên bi với 20 viên bi trắng và 9 viên bi đen. Vậy \(P\left( {A|\overline B } \right) = \frac{{20}}{{29}}\).

Cách 2: Bằng công thức

Bình có 30 cách chọn, An có 29 cách chọn một viên bi trong hộp. Do đó, \(n\left( \Omega  \right) = 30.29\)

Bình có 10 cách chọn một viên bi đen, An có 29 cách chọn từ 29 viên bi còn lại.

Do đó, \(n\left( {\overline B } \right) = 10.29\) và \(P\left( {\overline B } \right) = \frac{{n\left( {\overline B } \right)}}{{n\left( \Omega  \right)}}\)

Bình có 10 cách chọn một viên bi đen, An có 20 cách chọn một viên bi trắng. Do đó, \(n\left( {A\overline B } \right) = 10.20\) và \(P\left( {\overline B } \right) = \frac{{n\left( {A\overline B } \right)}}{{n\left( \Omega  \right)}}\)

Vậy \(P\left( {A|\overline B } \right) = \frac{{n\left( {A\overline B } \right)}}{{n\left( {\overline B } \right)}} = \frac{{10.20}}{{10.29}} = \frac{{20}}{{29}}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống - Trang 66)

Hướng dẫn giải

Theo định nghĩa, \(P\left( {\overline A |B} \right)\) là xác suất của \(\overline A \), tính trong điều kiện biết rằng nếu biến cố B đã xảy ra. Vì A và B độc lập nên \(\overline A \) và B cũng độc lập. Do đó, việc xảy ra B không ảnh hưởng tới xác suất xuất hiện của \(\overline A \). Do đó, \(P\left( {\overline A |B} \right) = P\left( {\overline A } \right)\).

Theo định nghĩa, \(P\left( {A|\overline B } \right) = P\left( A \right)\) là xác suất của A, tính trong điều kiện biết rằng nếu biến cố \(\overline B \) đã xảy ra. Vì A và B độc lập nên A và \(\overline B \) cũng độc lập. Do đó, việc xảy ra \(\overline B \) không ảnh hưởng tới xác suất xuất hiện của A. Do đó, \(P\left( {A|\overline B } \right) = P\left( A \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống - Trang 68)

Hướng dẫn giải

Không gian mẫu \(\Omega \) là tập hợp gồm 4 000 bệnh nhân thử nghiệm nên \(n\left( \Omega  \right) = 4000\)

a) Gọi A là biến cố: “Người đó uống thuốc M”, B là biến cố “Người đó khỏi bệnh”

Khi đó biến cố AB là: “Người đó uống thuốc M và khỏi bệnh”

Ta có: \(1600 + 1200 = 2800\) người khỏi bệnh nên \(n\left( B \right) = 2800\). Do đó, \(P\left( B \right) = \frac{{2800}}{{4000}}\)

Trong số những người khỏi bệnh, có 1 600 người uống thuốc M nên \(n\left( {AB} \right) = 1\;600\)

Do đó, \(P\left( {AB} \right) = \frac{{1600}}{{4000}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{1600}}{{2800}} = \frac{4}{7}\)

b) Gọi A là biến cố: “Người đó uống thuốc N”, B là biến cố “Người đó không khỏi bệnh”.

Khi đó biến cố AB là: “Người đó uống thuốc N và không khỏi bệnh”

Ta có: \(800 + 400 = 1200\) người không khỏi bệnh nên \(n\left( B \right) = 1200\). Do đó, \(P\left( B \right) = \frac{{1200}}{{4000}}\)

Trong số những người không khỏi bệnh, có 400 người uống thuốc N nên \(n\left( {AB} \right) = 400\)

Do đó, \(P\left( {AB} \right) = \frac{{400}}{{4000}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{400}}{{1200}} = \frac{1}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống - Trang 68)

Hướng dẫn giải

Với hai biến cố A và B, \(P\left( B \right) > 0\), ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) nên \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\)

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 4 (SGK Kết nối tri thức với cuộc sống - Trang 69)

Hướng dẫn giải

a) Gọi A là biến cố: “Bạn Sơn lấy được bút bi xanh”; B là biến cố: “Bạn Tùng lấy được bút bi đen”.

Vì \(n\left( A \right) = 7\) nên \(P\left( A \right) = \frac{7}{{12}}\)

Nếu A xảy ra tức là bạn Sơn lấy được bút bi xanh thì trong hộp có 11 bút bi với 5 bút bi đen. Do đó, \(P\left( {B|A} \right) = \frac{5}{{11}}\)

Theo công thức nhân xác suất ta có: \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{7}{{12}}.\frac{5}{{11}} = \frac{{35}}{{132}}\)

b) Dựa vào sơ đồ cây trong Ví dụ 4, xác suất để lấy ra hai bút có cùng màu là: \(\frac{5}{{12}}.\frac{4}{{11}} + \frac{7}{{12}}.\frac{6}{{11}} = \frac{{31}}{{66}}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng (SGK Kết nối tri thức với cuộc sống - Trang 69)

Hướng dẫn giải

a) Vì chỉ có một chiếc ô tô đằng sau ba cánh cửa nên \(P\left( {{E_1}} \right) = P\left( {{E_2}} \right) = P\left( {{E_3}} \right) = \frac{1}{3}\).

Nếu \({E_1}\) xảy ra, tức là sau cửa sổ 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy \(P\left( {H|{E_1}} \right) = \frac{1}{2}\).

Nếu \({E_2}\) xảy ra, tức là cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó \(P\left( {H|{E_2}} \right) = 1\).

b) Ta có: \(P\left( {{E_1}|H} \right) = \frac{{P\left( {{E_1}H} \right)}}{{P\left( H \right)}} = \frac{{P\left( {{E_1}} \right).P\left( {H|{E_1}} \right)}}{{P\left( H \right)}}\),

\(P\left( {{E_2}|H} \right) = \frac{{P\left( {{E_2}H} \right)}}{{P\left( H \right)}} = \frac{{P\left( {{E_2}} \right).P\left( {H|{E_2}} \right)}}{{P\left( H \right)}}\).

c) Vì \(P\left( {{E_1}|H} \right) = \frac{{P\left( {{E_1}} \right).P\left( {H|{E_1}} \right)}}{{P\left( H \right)}}\), \(P\left( {{E_2}|H} \right) = \frac{{P\left( {{E_2}} \right).P\left( {H|{E_2}} \right)}}{{P\left( H \right)}}\), \(P\left( {H|{E_1}} \right) = \frac{1}{2}\) và \(P\left( {H|{E_2}} \right) = 1\) nên \(P\left( {{E_2}|H} \right) = 2P\left( {{E_1}|H} \right)\) do đó người đó nên chuyển sang cửa còn lại.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.1 (SGK Kết nối tri thức với cuộc sống - Trang 70)

Hướng dẫn giải

Từ 1 đến 20 có số số chẵn là:       
         '(20-2):2+1=10' (số)     
Không gian mẫu: 10      
Xác suất để người đó rút được thẻ số 10 là: '1/10'

(Trả lời bởi Rái cá máu lửa)
Thảo luận (1)

Bài 6.2 (SGK Kết nối tri thức với cuộc sống - Trang 70)

Hướng dẫn giải

Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,2.0,8}}{{0,51}} = \frac{{16}}{{51}}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 6.3 (SGK Kết nối tri thức với cuộc sống - Trang 70)

Hướng dẫn giải

Gieo hai con xúc xắc cân đối, đồng chất thì số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 6.6 = 36\)

Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”, B là biến cố “ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.

Khi đó biến cố AB là: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 và ít nhất có một con xúc xắc xuất hiện mặt 5 chấm”.

Tập hợp các kết quả thuận lợi của biến cố A là: \(\left\{ {\left( {1;6} \right);\left( {2;5} \right);\left( {3;4} \right);\left( {4;3} \right);\left( {5;2} \right);\left( {6;1} \right)} \right\}\) nên \(n\left( A \right) = 6\). Do đó, \(P\left( A \right) = \frac{6}{{36}}\)

Tập hợp các kết quả thuận lợi của biến cố B là:

\(\left\{ {\left( {1;5} \right);\left( {2;5} \right);\left( {3;5} \right)\left( {4;5} \right);\left( {5;5} \right);\left( {6;5} \right);\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;6} \right)} \right\}\) nên \(n\left( B \right) = 11\)

Do đó, \(P\left( B \right) = \frac{{11}}{{36}}\)

Tập hợp các kết quả thuận lợi của biến cố AB là: \(\left\{ {\left( {2;5} \right);\left( {5;2} \right)} \right\}\) nên \(n\left( {AB} \right) = 2\)

Do đó, \(P\left( {AB} \right) = \frac{2}{{36}}\)

a) Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\).

b) Vậy \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{6} = \frac{1}{3}\).

(Trả lời bởi datcoder)
Thảo luận (1)