Bài 18. Xác suất có điều kiện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Chứng tỏ rằng nếu A và B là hai biến cố độc lập thì: \(P\left(\overline{A}\text{|}B\right)=P\left(\overline{A}\right)\) và \(P\left(A\text{|}\overline{B}\right)=P\left(A\right)\).

datcoder
28 tháng 10 lúc 6:34

Theo định nghĩa, \(P\left( {\overline A |B} \right)\) là xác suất của \(\overline A \), tính trong điều kiện biết rằng nếu biến cố B đã xảy ra. Vì A và B độc lập nên \(\overline A \) và B cũng độc lập. Do đó, việc xảy ra B không ảnh hưởng tới xác suất xuất hiện của \(\overline A \). Do đó, \(P\left( {\overline A |B} \right) = P\left( {\overline A } \right)\).

Theo định nghĩa, \(P\left( {A|\overline B } \right) = P\left( A \right)\) là xác suất của A, tính trong điều kiện biết rằng nếu biến cố \(\overline B \) đã xảy ra. Vì A và B độc lập nên A và \(\overline B \) cũng độc lập. Do đó, việc xảy ra \(\overline B \) không ảnh hưởng tới xác suất xuất hiện của A. Do đó, \(P\left( {A|\overline B } \right) = P\left( A \right)\).