Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc đó không nhỏ hơn 10 nếu biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm.
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc đó không nhỏ hơn 10 nếu biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm.
Bạn An phải thực hiện hai thí nghiệm liên tiếp. Thí nghiệm thứ nhất có xác suất thành công là 0,7. Nếu thí nghiệm thứ nhất thành công thì xác suất thành công của thí nghiệm thứ hai là 0,9. Nếu thí nghiệm thứ nhất không thành công thì xác suất thành công của thí nghiệm thứ hai chỉ là 0,4. Tính xác suất để:
a) Cả hai thí nghiệm đều thành công;
b) Cả hai thí nghiệm đều không thành công;
c) Thí nghiệm thứ nhất thành công và thí nghiệm thứ hai không thành công.
Thảo luận (1)Hướng dẫn giảiGọi A là biến cố: “Thí nghiệm thứ nhất thành công”, B là biến cố “Thí nghiệm thứ hai thành công”. Khi đó, biến cố AB là: “Cả hai thí nghiệm đều thành công”
Theo đầu bài ta có: \(P\left( A \right) = 0,7,P\left( {B|A} \right) = 0,9,P\left( {B|\overline A } \right) = 0,4\). Suy ra \(P\left( {\overline A } \right) = 0,3\)
a) Ta có: \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = 0,7.0,9 = 0,63\)
b) Biến cố \(\overline A \overline B \): “Cả hai thí nghiệm đều không thành công”
Ta có: \(P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,4 = 0,6\).
Lại có: \(P\left( {\overline {AB} } \right) = P\left( {\overline A } \right).P\left( {\overline B |\overline A } \right) = 0,3.0,6 = 0,18\).
c) Vì \(A\overline B \) và AB là hai biến cố xung khắc và \(A\overline B \cup AB = A\) nên theo tính chất của xác xuất ta có: \(P\left( {A\overline B } \right) = P\left( A \right) - P\left( {AB} \right) = 0,7 - 0,63 = 0,07\)
(Trả lời bởi datcoder)
Trong một túi có một số chiếc kẹo cùng loại, chỉ khác màu, trong đó có 6 cái kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên một cái kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm một cái kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai cái kẹo màu cam là \(\dfrac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu cái kẹo?
Thảo luận (1)Hướng dẫn giảiGọi số kẹo trong túi là n (cái, \(n \in \mathbb{N}*,n > 6\)), khi đó, số kẹo màu vàng trong túi là \(n - 6\) (cái).
Số cách chọn kẹo thứ nhất là n, số cách chọn kẹo thứ hai là \(n - 1\). Do đó, \(n\left( \Omega \right) = n\left( {n - 1} \right)\)
Gọi A là biến cố: “Lấy được viên kẹo thứ nhất màu cam”, B là biến cố: “Lấy được viên kẹo thứ hai màu cam”. Khi đó, biến cố AB “Lấy được hai viên kẹo màu cam”.
Xác suất của biến cố A là: \(P\left( A \right) = \frac{{6.\left( {n - 1} \right)}}{{n\left( {n - 1} \right)}} = \frac{6}{n}\).
Vì lấy ra một cái kẹo màu cam ở lần thứ nhất nên trong túi còn lại \(n - 1\) cái kẹo, trong đó có 5 cái kẹo màu cam. Do đó, \(P\left( {B|A} \right) = \frac{5}{{n - 1}}\).
Ta có: \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{6}{n}.\frac{5}{{n - 1}} = \frac{{30}}{{n\left( {n - 1} \right)}}\)
Vì xác suất Hà lấy được cả hai cái kẹo màu cam là \(\frac{1}{3}\) nên ta có:
\(\frac{1}{3} = \frac{{30}}{{n\left( {n - 1} \right)}} \Rightarrow {n^2} - n - 90 = 0 \Rightarrow \left( {n - 10} \right)\left( {n + 9} \right) = 0 \Rightarrow \left[ \begin{array}{l}n = 10\left( {tm} \right)\\n = - 9\left( {ktm} \right)\end{array} \right.\)
Vậy trong túi có 10 cái kẹo.
(Trả lời bởi datcoder)