Tìm phần thực và phần ảo của số phức z biết :
a) \(z=1-\pi i\)
b) \(z=\sqrt{2}-i\)
c) \(z=2\sqrt{2}\)
d) \(z=-7i\)
Tìm phần thực và phần ảo của số phức z biết :
a) \(z=1-\pi i\)
b) \(z=\sqrt{2}-i\)
c) \(z=2\sqrt{2}\)
d) \(z=-7i\)
Tìm các số thực x và y, biết :
a) \(\left(3x-2\right)+\left(2y+1\right)i=\left(x+1\right)-\left(y-5\right)i\)
b) \(\left(1-2x\right)-i\sqrt{3}=\sqrt{5}+\left(1-3y\right)i\)
c) \(\left(2x+y\right)+\left(2y-x\right)i=\left(x-2y+3\right)+\left(y+2x+1\right)i\)
Thảo luận (1)Hướng dẫn giảiTừ định nghĩa bằng nhau của hai số phức, ta có:
a) ⇔ ;
b) ⇔ ;
c) ⇔ ⇔ .
(Trả lời bởi Nguyễn Bảo Trung)
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) Phần thực của z bằng -2
b) Phần ảo của z bằng 3
c) Phần thực của z thuộc khoảng (-1; 2)
d) Phần ảo của z thuộc đoạn [1; 3]
e) Phần thực và phần ảo của z đểu thuộc đoạn [-2; 2]
Thảo luận (1)Hướng dẫn giảiGiả sử z = x + yi (x, y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diaãn số phức z.
a) Phần thực của z bằng -2, tức là x = -2, y ε R.
Vậy tập hợp các điểm biểu diễn số phức z là đường thẳng x = -2 trên mặt phẳng toạ độ Oxy
b) Ta có x ε R và y = 3
Vậy tập hợp điểm biểu diễn số phức z là đường thẳng y = 3 trên mặt phẳng Oxy.
c) Ta có x ε (-1;2) và y ε R.
Vậy tập hợp số phức z cần tìm là các điểm nằm giữa hai đường thẳng x = -1 và x = 2 trên mặt phẳng Oxy
d) Ta có x ε R và y ε [1;3]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng nằm giữa hai đường thẳng y = 1 và y = 3
e) Ta có x ε [-2; 2] và y ε [-2; 2]
Vậy tập hợp các điểm cần tìm là phần mặt phẳng thuộc hình vuông (kể cả cạnh) được vẽ trên hình e (phần gạch sọc).
(Trả lời bởi Nguyễn Bảo Trung)
Tính \(\left|z\right|\) với :
a) \(z=-2+i\sqrt{3}\)
b) \(z=\sqrt{2}-3i\)
c) \(z=-5\)
d) \(z=i\sqrt{3}\)
Thảo luận (1)Hướng dẫn giải
Trên mặt phẳng tọa độ, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện :
a) \(\left|z\right|=1\)
b) \(\left|z\right|\le1\)
c) \(1< \left|z\right|\le2\)
d) \(\left|z\right|=1\) và phần ảo của z bằng 1
Thảo luận (1)Hướng dẫn giảiGiả sử z = x + yi, (x,y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.
a) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1.
Vậy tập hợp điểm biểu diễn số phức z là đường tròn tam O, bán kính bằng 1
b) Ta có |z| ≤ 1 ⇔ ≤ 1 ⇔ x2 + y2 ≤ 1.
Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm O, bán kính bằng 1 (kể cả các điểm trên đường tròn) (hình b)
c) Ta có 1 < |z| ≤ 2 ⇔ 1 < ≤ 2 ⇔ 1 < x2 + y2 ≤ 4.
Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm O, bán kính bằng 1 (không kể điểm trên đường tròn này) và đường tròn tâm O, bán kính bằng 2 (kể cả các điểm trên đường tròn này)
d) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1 và phần ảo của z bằng 1 tức y = 1. Suy ra x = 0 và y = 1
Vậy tập hợp các điểm cần tìm là điểm A(0;1)
(Trả lời bởi Nguyễn Bảo Trung)
Tìm \(\overline{z}\) biết :
a) \(z=1-i\sqrt{2}\)
b) \(z=-\sqrt{2}+i\sqrt{3}\)
c) \(z=5\)
d) \(z=7i\)
Thảo luận (1)Hướng dẫn giảia) (3 - 5i) + (2 + 4i) = (3 + 2) + (-5i + 4i) = 5 - i.
b) (-2 - 3i) + (-1 - 7i) = (-2 - 1) + (-3i - 7i) = -3 - 10i
c) (4 + 3i) - (5 - 7i) = (4 - 5) + (3i + 7i) = -1 + 10i
d) (2 - 3i) - ( 5 - 4i) = (2 - 5) + (-3i + 4i) = -3 + i
(Trả lời bởi Nguyễn Bảo Trung)
Tìm các số thực \(x,y\) thỏa mãn :
a) \(2x+1+\left(1-2y\right)i=2-x+\left(3y-2\right)i\)
b) \(4x+3+\left(3y-2\right)i=y+1+\left(x-3\right)i\)
c) \(x+2y+\left(2x-y\right)i=2x+y+\left(x+2y\right)i\)
Cho hai số phức \(\alpha=a+bi;\beta=c+di\)
Hãy tìm điều kiện của \(a,b,c,d\) để các điểm biểu diễn \(\alpha\) và \(\beta\) trên mặt phẳng tọa độ :
a) Đối xứng với nhau qua trục Ox
b) Đối xứng với nhau qua trục Oy
c) Đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba
d) Đối xứng với nhau qua gốc tọa độ
Thảo luận (1)Hướng dẫn giải
a) a = c, b = – d b) a = – c, b = d
c) a = d, b = c d) a = – c, b = – d
(Trả lời bởi Nguyễn Mạnh Đạt)
Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức \(z\) thỏa mãn điều kiện :
a) Phần thực của \(z\) bằng phần ảo của nó
b) Phần thực của \(z\) là số đối của phần ảo của nó
c) Phần ảo của \(z\) bằng hai lần phần thực của nó cộng với 1
d) Môđun của \(z\) bằng 1, phần thực của \(z\) không âm
Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình 87 và 88 ?