Hình 22.
Cho BCD là tam giác đều cạnh 5cm và góc DAB bằng \(40^0\). Hãy tính :
a) AD
b) AB
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Hình 22.
Cho BCD là tam giác đều cạnh 5cm và góc DAB bằng \(40^0\). Hãy tính :
a) AD
b) AB
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Tìm x và y trong các hình sau (h.20)
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Thảo luận (1)Hướng dẫn giải
Tam giác ABC vuông tại A có \(AB=21cm,\widehat{C}=40^0\). Hãy tính các độ dài :
a) AC
b) BC
c) Phân giác BD
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Thảo luận (2)Hướng dẫn giảia) Ta có: \(AC=AB.\cot\widehat{C}=21.\cot\widehat{40^o}\simeq25,0268\left(cm\right)\)
b) Ta có: \(BC=\dfrac{AC}{\sin\widehat{C}}=\dfrac{21}{\sin\widehat{40^o}}\simeq32,6702\left(cm\right)\)
c) Vì ΔABCΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^o\)
Suy ra: \(\widehat{B}=90^o-\widehat{C}=90^o-40^o=50^o\)
Vì BD là phân giác của B nên:
\(\widehat{ABD}=\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}.50^o=25^o\)
Trong tam giác vuông ABD, ta có:
\(BD=\dfrac{AB}{\cos\widehat{ABD}}=\dfrac{21}{\cos25^o}\simeq23,1709\left(cm\right)\)
(Trả lời bởi BW_P&A)
Cho tam giác ABC có \(BC=12cm,\widehat{B}=60^0,\widehat{C}=40^0\). Tính :
a) Đường cao CH và cạnh AC
b) Diện tích tam giác ABC
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Thảo luận (3)Hướng dẫn giảibài trong sbt có giải á bạn
(Trả lời bởi nguyễn thị mỹ lan)
Một khúc sông rộng khoảng 250m. Một chiếc đò chèo qua sông bị dòng nước đẩy xiên nên phải chèo khoảng 320m mới sang được bờ bên kia. Hỏi dòng nước đã đẩy chiếc đò lệch đi một góc bằng bao nhiêu độ ? (góc \(\alpha\) trong hình 32)
Thảo luận (1)Hướng dẫn giải
Cho tam giác ABC trong đó AB = 5cm, AC = 8cm, \(\widehat{BAC}=20^0\). Tính diện tích tam giác ABC, có thể dùng các thông tin dưới đây nếu cần ;
\(\sin20^0\approx0,3420;\cos20^0\approx0,9397;tg20^0\approx0,3640\)
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Thảo luận (1)Hướng dẫn giảiKẻ BH vuông góc với AC
Xét ΔABH vuông tại H có \(BH=AB\cdot\sin A\simeq1,7101\left(cm\right)\)
\(S_{ABC}=\dfrac{BH\cdot AC}{2}=6.8404\left(cm^2\right)\)
(Trả lời bởi Nguyễn Lê Phước Thịnh)
Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng \(34^0\) và bóng của một tháp trên mặt đất dài 86m (h.30). Tính chiều cao của tháp (làm tròn đến mét)
Thảo luận (2)Hướng dẫn giảiChiều cao của tháp là .
(Trả lời bởi Nhật Linh)
Một cột đèn cao 7m có bóng trên mặt đất dài 4m. Hãy tính góc (làm tròn đến phút) mà tia sáng mặt trời tạo với mặt đất (góc \(\alpha\) trong hình 31)
Thảo luận (2)Hướng dẫn giải
Một con thuyền với vận tốc 2km/h vượt qua một khúc sông nước chảy rất mạnh mất 5 phút. Biết đường đi của con thuyền tạo với bờ một góc \(70^0\). Từ đó đã có thể tính được chiều rộng của khúc sông chưa ? Nếu có thể hãy tính kết quả (làm tròn đến mét)
Thảo luận (1)Hướng dẫn giảiGọi AB là đoạn đường mà con thuyền đi được trong 5 phút, BH là chiều rộng của khúc sông.
Xét tam giác ABH vuông tại H, biết cạnh huyền AB và một góc nhọn thì có thể tính được BH.
Quãng đường thuyền đi trong 5 phút là:
Chiều rộng khúc sông là: .
(Trả lời bởi Nhật Linh)
Cho hình 21.
Biết \(\widehat{QPT}=18^0;\widehat{PTQ}=150^0;QT=8cm;TR=5cm\). Hãy tính :
a) PT
b) Diện tích tam giác PQR
(Các kết quả tính độ dài, diện tích, các tỉ số lượng giác được làm tròn đến chữ số thập phân thứ ba và các kết quả tính góc được làm tròn đến phút)
Thảo luận (1)Hướng dẫn giảiKẻ QS⊥PR
Ta có : \(\widehat{QTS}=180^0-\widehat{QTP}=180^0-150^0=30^0\)
Trong tam giác vuông QST, ta có:
\(QS=QT.sinQTS=8.sin30^0=4\left(cm\right)\)
\(TS=QT.cosQTS=8.cos30^0\sim6,928\left(cm\right)\)
Trong tam giác vuông QSP, ta có:
\(SP=QS.cotQPS=4.cot18^0=12,311\left(cm\right)\)
\(PT=SP-TS\sim12,311-6,928\sim5,383\left(cm\right)\)
b) Ta có:
\(S_{QPR}=\frac{1}{2}.QS.PR=\frac{1}{2}.QS.\left(PT+TR\right)\sim\frac{1}{2}.4.\left(5,383+5\right)\sim20,766\left(cm^2\right)\)
(Trả lời bởi ₮ØⱤ₴₮)