4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
3. Tìm tập xác định của các hàm số sau:
a) \(y = 2^{x^2-1}\)
b) \(y = x^{-4}\)
c) \(y = (x-1)^{-3}\)
d) \(y = (x^2-1)^{4\pi}\)
e) \(y = \ln (4x^2-1)\)
f) \(y = \log_{3} (x^2-2)\)
h) \(y = (2x^2-4x)^{\frac{-1}{3}}\)
k) \(y = (2x-1)^{-4}\)
l) \(y = \log_{3} (x^2-1) + \ln (x-2) + e^{\frac{x}{x-1}}\)
\(^{y=e^{\dfrac{2x+m}{x-1}}}\). tìm m để Max y=e5 trên \(\left[2;4\right]\)
Zúp e câu này vs ạ
9x16 mũ X + 16x9 mũ X = 25x12 mũ x
Với các số thực dương xyz đôi một khác nhau thỏa xyz=1 và x,y,z khác 1 tìm minP=logx\(\dfrac{y}{z}\)+logy\(\dfrac{z}{x}\)+logz\(\dfrac{x}{y}\)+2(log\(\dfrac{y}{z}\)(x)+log\(\dfrac{z}{x}\)(y)+log\(\dfrac{x}{y}\)(z))
Tổng tất cả các giá trị m nguyên dương để hàm số y = \(\left(\dfrac{\pi}{6}\right)^{e^{3x}-\left(m-1\right)e^x+2}\)luôn nghịch biến trên khoảng (1;3) là:
A. 253
B. 300
C. 276
D. 231
\(\frac{1}{2}\left(e^x-e^{-x}\right)\)
chứng minh hàm số y=\(\dfrac{1}{3}x^3-mx^2-\left(2m+3\right)x+9\) luôn có cực trị với mọi giá trị của hàm số m
Với giá trị nào của m thì đồ thị hàm số y=2x³+3( m-1 )x²+6(m-2)x-1 có cực đại , cực tiểu thoả mãn |Xcđ+Xct|=2