\(xy\left(x-y\right)-yz\left(y-z\right)-zx\left(z-x\right)\)
\(\Leftrightarrow x^2y-xy^2-y^2z+yz^2-xz\left(z-x\right)\)
\(\Leftrightarrow x^2y-xy^2-y^2z+yz^2-xz^2+x^2z\)
\(xy\left(x-y\right)-yz\left(y-z\right)-zx\left(z-x\right)\)
\(\Leftrightarrow x^2y-xy^2-y^2z+yz^2-xz\left(z-x\right)\)
\(\Leftrightarrow x^2y-xy^2-y^2z+yz^2-xz^2+x^2z\)
cho x,y,z dương thỏa mãn x+y+z=1. CMR:
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
cho x+y+z=1. chứng minh:\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Cho x, y, z >0 thỏa mãn x + y + z = 1
CMR: \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{zx}{zx+y}}\le\dfrac{3}{2}\)
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)
cho các số thực dưong x,y,z thỏa mãn : x2+y2+z2=3
chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Cho x,y,z >0 t/m x2+y2+z2=3.
C/m \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
cho x,y,z là các số thực dương , thỏa mãn : xy+yz+zx=xyz
Chứng minh rằng \(\dfrac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\dfrac{yz}{x^3\left(1+y\right)\left(1+z\right)}+\dfrac{zx}{y^3\left(1+z\right)\left(1+x\right)}\ge\dfrac{1}{16}\)