b: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4}=-\dfrac{4-12}{4}=\dfrac{-\left(-8\right)}{4}=2\end{matrix}\right.\)
=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1
a: \(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-1}-\dfrac{x_2+1}{x_2-1}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2-x_1+x_2-1-x_1x_2+x_2-x_1+1}{\left(x_1-1\right)\left(x_2-1\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{-2}{\left(x_1-1\right)\left(x_2-1\right)}\)
Nếu x1<1; x2<1 thì (x1-1)(x2-1)>0
=>A<0
=>Hàm số nghịch biến
Nếu x1>1; x2>1 thì (x1-1)(x2-1)>0
=>A<0
=>Hàm số nghịch biến