Lời giải:
$x^2+x+2=(x+\frac{1}{2})^2+\frac{7}{4}\geq \frac{7}{4}>0, \forall x\in\mathbb{R}$
Tức là $x^2+x+2\neq 0, \forall x\in\mathbb{R}$
Do đó mệnh đề đúng.
Lời giải:
$x^2+x+2=(x+\frac{1}{2})^2+\frac{7}{4}\geq \frac{7}{4}>0, \forall x\in\mathbb{R}$
Tức là $x^2+x+2\neq 0, \forall x\in\mathbb{R}$
Do đó mệnh đề đúng.
1. Mệnh đề nào đúng , giải thích ?
a ) P: ∃ xϵ R, 5x _ 3x 2 ≤ 1
2. Xem mđ đó đúng hay sai
a) P= ∃ x ϵ R: x 2 ≤ 0
b) P = ∀ x ϵ R : x ≤ x 2
c) P = ∀ x ϵ Q : 4x2 - 1 ≠ 0
d) P = ∃ x ϵ R : x2 - x + 7 nhỏ hơn 0
Phát biểu thành lời mỗi mệnh đề sau và xét tính đúng sai của nó
a) ∀x ∈ R: x2>0;
b) ∃ n ∈ N: n2=n;
c) ∀n ∈ N: n ≤ 2n;
d) ∃ x∈R: x<1/x
a) S:" ∃x ∈ IR, x^2 = 5x - 4"
b) P:"∃x ∈ IR, 2x + 1=0"
Xét tính đúng sai và viết mệnh đề phủ định của nó
Phát biểu thành lời, xét tính đúng sai và lập mệnh đề phủ định của các mệnh đề sau:
a/ ∃ x ∈ R : x2 = -1
b/∀ x ∈ R : x2 +x +2 ≠0
giup mình voi . Mình cần gấp
Phát biểu thành lời các mệnh đề sau và xét tính đúng sai của chúng ?
a) \(\forall x\in R:x^2\le0\)
b) \(\exists x\in R:x^2\le0\)
c) \(\forall x\in R:\dfrac{x^2-1}{x-1}=x+1\)
d) \(\exists x\in R:\dfrac{x^2-1}{x-1}=x+1\)
e) \(\forall x\in:x^2+x+1>0\)
f) \(\exists x\in:x^2+x+1>0\)
bài 1: xét đúng(sai) mệnh đề và phủ định các mệnh đề sau:
a) ∃x ∈ ℝ,x^3 - x^2 +1 > 0
b) ∀x ∈ ℝ,x^4 - x^2 +1=(x^2+ √3x +1)(x^2-√3x+1)
bài 2: xác định tính đúng-sai của các mệnh đề sau :
a)∀x ∈ R,x > -2 ⇒ x^2 > 4 b)∀x ∈ N,x >2 ⇔x^2 > 4
bài 3: a) Cho mệnh đề P:''Với mọi số thực x,nếu x là số hữu tỉ thì 2x là số hữu tỉ''.
Dùng kí hiệu viết P,P có dấu gạch ngang ở trên(mệnh đề phủ định của P) và xác định tính đúng-sai của cả 2 mệnh đề.
b) Phát biểu mệnh đề đảo của P và chứng tỏ mệnh đề đó là đúng.Phát biểu mệnh đề dưới dạng mệnh đề tương đương
Bài 4: Xét tính đúng sai của các mệnh đề sau:
a) P: ''∀x ∈ R,∀y ∈ R: x + y = 1'' b) Q:'' ∃x ∈ R, ∃y ∈ R: x + y = 2''
Mọi người giải hộ để em đối chiếu đáp án của mình với ạ,em cảm ơn.
Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai cuả nó.
a) ∀n ∈ N: n chia hết cho n;
b) ∃x ∈ Q: x2=2;
c) ∀x ∈ R: x< x+1;
d) ∃x ∈ R: 3x=x2+1;
a,\(\forall x\in R,x>3\Leftrightarrow x^2>3\)
giải thích sao mệnh đề trên đúng( rõ ràng)
Những mệnh đề sau đúng hay sai, giải thích
a) A: "∃ x ∈ R: x2 + 3x = 4"
b) B: "∀x∈ R: 2x2 - 3x - 5 = 0"
c) C: "∀x ∈ R: x2 + 2x + 1 ≠ 0"
d) D: "∃ x ∈ N: 3x2 + 2x - 1 = 0"
e) E:" ∃ x ∈ Q: 3x2 + 2x -1 = 0"
f) F: "∀ x ∈ R: x2 + 2x + 5 > 0"
cho mệnh đề P: " ∃x ∈ |R , x^2 +2x+3>0 " xét tính đúng sai của mệnh đề
giáo viên giải: vì x^2 +2x+3= (x+1)^2 +2 ≥ 2 >0 => ∀x ∈ |R , x^2 +2x+3>0 => mệnh đề P saicho mình hỏi làm vậy có đúng không? :(
nếu viết ra ta được mệnh đề phủ định của P là :'' ∀x ∈ |R , x^2 +2x+3 ≤0 '' => SAInhưng theo lý thuyết thì 1 trong 2 (mệnh đề P và mệnh đề phủ định của nó) phải có 1 đúng 1 sai chứ??