Giải hpt :
1. \(\left\{{}\begin{matrix}x^2+xy\left(2y-1\right)=2y^3-2y^2-x\\6\sqrt{x-1}+y+7=4x\left(y-1\right)\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}x\sqrt{x^2+y}+y=\sqrt{x^4+x^2}+x\\x+\sqrt{y}+\sqrt{x-1}+\sqrt{y\left(x-1\right)}=\frac{9}{2}\end{matrix}\right.\)
3.
neu x=1=hay y=2 thi x+2y-2xy-1=0 hay cm:
2x+y=3/x^2
2y+x=3/y^2
BÀi 30 SGK 8:
Rút gọn các biểu thức sau:
a) (x + 3)(x2 – 3x + 9) – (54 + x3)
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
2x=z;3x=2y và (x+1)+2(y+2)+3(z+3)
tìm x,y thuộc Z a, 2y(x^2+1)=225-x^2 b,123xy chia hết 9 và 7 (x,y là chữ số) c,/2x-3/+4*5^2=103 d, 3*(5^3x-1-1)-2=70
Giải hệ giùm e các bác ơi \(\left\{{}\begin{matrix}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{matrix}\right.\)
Tìm x, y, z
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có
\(\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}\\ =\dfrac{x+y+2+y+z+1+z+x-3}{z+x+y}=\dfrac{2\left(x+y+z\right)+\left(1+2-3\right)}{z+x+y}=2\\ Vì\dfrac{x+y+2}{z}=\dfrac{y+z+1}{x}=\dfrac{z+x-3}{y}=\dfrac{1}{x+y+z}\\ =>2=\dfrac{1}{x+y+z}=>2\left(x+y+z\right)=1=>x+y+z=\dfrac{1}{2}\\ =>\dfrac{x+y+2}{z}=2=>x+y+2=2z\\ \dfrac{y+z+1}{x}=2=>y+z+1=2x\\ \dfrac{z+x-3}{y}=2=>z+x-3=2y\\ \dfrac{1}{x+y+z}=2=>x+y+z=\dfrac{1}{2}\)
+) x+y+z = \(\dfrac{1}{2}=>y+z=\dfrac{1}{2}-x=>\dfrac{1}{2}-x+1=2x=>3x=\dfrac{3}{2}=>x=\dfrac{1}{2}\)
+)\(x+y+z=\dfrac{1}{2}=>x+y=\dfrac{1}{2}-z=>\dfrac{1}{2}-z+2=2z=>3z=\dfrac{5}{2}=>z=\dfrac{5}{6}\)
\(=>x+y+z=\dfrac{1}{2}+\dfrac{5}{6}+y=\dfrac{1}{2}=>\dfrac{4}{3}+y=\dfrac{1}{2}=>y=\dfrac{-5}{6}\)
Vậy \(x=\dfrac{1}{2}\\ y=\dfrac{-5}{6}\\ z=\dfrac{5}{6}\)
Ê mấy bọn 7B Nguyễn Lương Bằng ơi bài 2 Toán chiều làm thế này đúng chưa! Góp ý nha!
cho biểu thức f(x,y)= \(x^2+2y^2-2xy+2mx+2y+25\) ( m là tham số). Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để f(x,y) \(\ge\) 0 với x, y thuộc R. tính tổng tất cả các phần tử của S