\(\dfrac{x^3+x^2-12}{x-2}\)
\(=\dfrac{x^3-2x^2+3x^2-6x+6x-12}{x-2}\)
\(=\dfrac{x^2\left(x-2\right)+3x\left(x-2\right)+6\left(x-2\right)}{x-2}\)
\(=\dfrac{\left(x-2\right)\left(x^2+3x+6\right)}{x-2}\)
\(=x^2+3x+6\)
\(\dfrac{x^3+x^2-12}{x-2}\)
\(=\dfrac{x^3-2x^2+3x^2-6x+6x-12}{x-2}\)
\(=\dfrac{x^2\left(x-2\right)+3x\left(x-2\right)+6\left(x-2\right)}{x-2}\)
\(=\dfrac{\left(x-2\right)\left(x^2+3x+6\right)}{x-2}\)
\(=x^2+3x+6\)
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
(x+1)(x+2)(x+3)(x+4)=40
\(\left(x^2+x\right)4\left(x^2+x\right)=12\)
Tính:
\(a,\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(b,\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
Chứng minh biểu thức sau không phụ thuộc vào giá trị của biến :
\(A=x.\left(5x-3\right)-x^2.\left(x-1\right)+x.\left(x^2-6x\right)-10+3x+x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(B=3.\left(2x-1\right)-5.\left(x-3\right)+6.\left(3x-4\right)-19x+x.\left(3x+12\right)-\left(7x-20\right)+x^2.\left(2x-3\right)-x.\left(2x^2+5\right)\)
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Đặt ẩn phụ:
a, \(\left(x^2+3x+1\right)\cdot\left(x^2+3x-3\right)-5\)
b, \(\left(x^2+2x\right)^2-2x^2-4x-3\)
c, \(\left(x+1\right)\cdot\left(x+3\right)\cdot\left(x+5\right)\cdot\left(x+7\right)+15\)
d, \(x^2-2xy+y^2-7x+7y+12\)
1,Giải PT sau
\n\na,(x-1)2+(x+3)2=2(x-2)(x+1)+38
\n\nb,5(x2-2x-1)+2(3x-2)=5(x+1)2
\n\nc,(x-3)3-2(x-1)=x(x-2)2-5x2
\n\nd,x(x+3)2-3x=(x+2)3+1
\n\ne,\\(\\frac{\\left(x-1\\right)\\left(x+5\\right)}{3}-\\frac{\\left(x+2\\right)\\left(x+5\\right)}{12}=\\frac{\\left(x-1\\right)\\left(x+2\\right)}{4}\\)
\n\n\n
Bài 2: tìm x, biết:
a,\(\left(2x-1\right)^2_{ }-19=45\)
b,\(\left(x-3\right)^2-x\left(x-7\right)=12\)
c,\(x^2-4+3x\left(x-2\right)=0\)
d,\(x^2-9=3\left(x-3\right)\)
e,\(3\left(3x^2+1\right)=6-2\left(3x+2\right)\)
h,\(2x\left(x+3\right)-4\left(x+3\right)=0\)
SAVE ME!!!THANK YOU