\(X^3+27=9-x^2\)
\((X+3)(x^2-3x+9)- (9-x^2)=0\)
\((X+3)(x^2-3x+9)-(x+3)(3-x)=0\)
\((X+3)(x^2-3x+9-3+x)=0\)
\((X+3)(x^2-2x+6)=0\)
th1 x+3=0
X=-3
Th2 \(X^2-2x+6=0\)
\((X^2-2x+4)+2=0\)
\((X-2)^2+2=0\)
ta có \((X-2)^2> hoặc = 0\)
Mà 2>0. Suy ra \((X-2)^2+2>0 ( vô nghiệm)\)
suy ra x=-3
\(x^3+27=9-x^2\Leftrightarrow x^3+x^2+18=0\Leftrightarrow\left(x+3\right)\left(x^2-2x+6\right)\Leftrightarrow x+3=0\Leftrightarrow x=-3\)(do \(x^2-2x+6=\left(x-1\right)^2+5\ge5>0\))