Vi x2+2≥0 nen pt⇔ x2+/x-1/=x2+2
=> /x-1/=2
=> \(\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1+2=3\\x=-2+1=-1\end{matrix}\right.\)
\(\left|x^2+|x-1|\right|=x^2+2\)
Dễ nhận thấy: \(x^2+2>0\) (*)
Ta có: \( \left|x^2+|x-1|\right|=x^2+2\Leftrightarrow\left[{}\begin{matrix}x^2+ \left|x-1\right|=x^2+2\\x^2+\left|x-1\right|=-x^2-2\end{matrix}\right.\)
Từ (*) ta có th 2 loại
Nên: \(x^2+\left|x-1\right|=x^2+2\Leftrightarrow\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)