Bài 1:
Đk:\(1\le x\le2\)
\(pt\Leftrightarrow x^2-3x-10=-\sqrt{x^2-3x+2}\)
Đặt \(\sqrt{x^2-3x+2}=t\left(t\ge0\right)\) ta có:
\(t^2-12=-t\Leftrightarrow t^2+t-12=0\)\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-4\left(loai\right)\\t=3\end{array}\right.\)
Xét \(t=3\Leftrightarrow x^2-3x+2=3\)
\(\Leftrightarrow x^2-3x-1=0\)
\(\Delta=\left(-3\right)^2-\left[\left(-4\right).\left(1.1\right)\right]=13\)\(\Leftrightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\) (thỏa mãn)
Bài 4:
Đk:\(x\in\left\{-\infty;\infty\right\}\)
\(pt\Leftrightarrow x^2-x-6+10=2\sqrt{x^2-x+4}\)
\(\Leftrightarrow x^2-x+4=2\sqrt{x^2-x+4}\)
Đặt \(\sqrt{x^2-x+4}=t\left(t\ge0\right)\) ta được:
\(t^2=2t\Leftrightarrow t^2-2t=0\Leftrightarrow t\left(t-2\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=0\\t=2\end{array}\right.\) (thỏa mãn)
Xét \(t=0\Rightarrow\sqrt{x^2-x+4}=0\)\(\Delta=\left(-1\right)^2-4\left(1.4\right)=-15< 0\) (vô nghiệm)
Xét \(t=2\Leftrightarrow\sqrt{x^2-x+4}=2\Leftrightarrow x^2-x+4=4\)\(\Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\) (thỏa mãn)