(x+1)(x+4)=(2-x)(2+x)
x2+5x+4=4-x2
2x2+5x=0
x(2x+5)=0
x=0 ; 2x+5=0=>x=-5/2
x2+ 5x + 4 = 4 - x2
<=> 2x2 + 5x = 0
<=> x(2x+5) = 0
=> x = 0 hoặc x -5/2
(x+1)(x+4)=(2-x)(2+x)
x2+5x+4=4-x2
2x2+5x=0
x(2x+5)=0
x=0 ; 2x+5=0=>x=
x2 + 5x + 4 = 4 - x2
<=> 2x2 + 5x = 0
<=> x. (2x+5) = 0
=> x = 0 hoặc \(x=-\dfrac{5}{2}\)
\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+5x+4=2^2-x^2\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
(x+1)(x+4)=(2-x)(2+x)
<=> \(x^2+x+4x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4-4+x^2=0\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{0;-\dfrac{5}{2}\right\}\)
a) (x + 1)(x + 4) = (2 - x)(2 + x)
\(\Leftrightarrow\) (x + 1)x + 4(x + 1) = 4 - x2
\(\Leftrightarrow\) x2 + x + 4x + 4 = 4 - x2
\(\Leftrightarrow\) 2x2 + 5x=0
\(\Leftrightarrow\) x(2x + 5) = 0
Ta được :
+) TH1 : x = 0
+) TH2 : 2x + 5 = 0
\(\Leftrightarrow\) 2x = - 5
\(\Leftrightarrow\) x= \(\dfrac{-5}{2}\) = - 2,5
Ta có: \(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+5x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4-4+x^2=0\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;\dfrac{-5}{2}\right\}\)