Áp dụng BĐT Cô-si dạng \(\sqrt{xy}\le\frac{x+y}{2}\) ta có :
+) \(\sqrt{x-4}=\sqrt{1\cdot\left(x-4\right)}\le\frac{1+x-4}{2}=\frac{x-3}{2}\)
+) \(\sqrt{6-x}=\sqrt{1\cdot\left(6-x\right)}\le\frac{1+6-x}{2}=\frac{7-x}{2}\)
Cộng theo vế ta được :
\(\sqrt{x-4}+\sqrt{6-x}\le\frac{x-3}{2}+\frac{7-x}{2}=\frac{x-3+7-x}{2}=\frac{4}{2}=2\)
Mặt khác :
\(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\forall x\)
Ta có : \(\left\{{}\begin{matrix}VT\le2\\VP\ge2\\VT=VP\end{matrix}\right.\)
Do đó \(VT=VP=2\)
Ta có hệ \(\left\{{}\begin{matrix}x-4=1\\6-x=1\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow x=5\)
Vậy...