Cô-Si là được rồi:v\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{x}}=2\)
Cô-Si là được rồi:v\(x+\dfrac{1}{x}\ge2\sqrt{\dfrac{x}{x}}=2\)
CM CÁC BẤT ĐẲNG THỨC SAU
A) \(X+\dfrac{1}{X}\ge2\) (X>0)
B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)
Chứng minh rằng:
\(x+\dfrac{1}{x}\ge2\left(\forall x>0\right)\)
1.Cho \(x\ge2y>0\). Tìm gtnn của \(P=\dfrac{x^2+y^2}{xy}\)
2.CM: \(x\left(x-1\right)+y\left(y-1\right)\ge2\\ \left(x;y>0;x+y\ge6\right)\)
Các bạn ơi giúp mk đi.
Cho x > 0 ,y > 0 , z > 0:
Chứng minh rằng: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}< \dfrac{1}{xyz}\)
Với x2+y2+z2=\(\dfrac{5}{3}\)
Cho hai số x,y khác 0. Chứng minh rằng: x2 + y2 + \(\left(\frac{1+xy}{x+y}\right)^2\ge2\)
Chứng minh rằng:
a) \(\dfrac{x}{y}\) + \(\dfrac{y}{z}\) + \(\dfrac{z}{x}\) với mọi x, y, z > 0
b) \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) \(\ge\) \(\dfrac{4}{x+y}\) với mọi x,y > 0
CM:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Với x ; y ; z >0
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
CM:
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{a+d}+\dfrac{d}{a+b}\ge2\)
Biết a; b; c; d >0