B1 Chứng minh rằng
a)cho a,b,c=0 và a;b;c khác 0
Cmt \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(\right)\)/\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)/
b) cho a=b+c và a;b;c là các số hữu tỉ khác 0
Cmr\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}+\)là 1 số hữu tỉ
c) cho a;b;c là các số hữu tỉ khác 0
Cmr √1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2 là 1 số hữu tỉ (dấu căn kéo dài hết ạ
d) cho a;b;c là 3 số hữu tỉ Tm ab-ba+ca=1
Cmr A= √(a^2+1)(b^2+1)(c^2+1) là 1 số hữu tỉ (dấu căn kéo dài hết ạ)
Giúp mình với !!
1. Rút gọn biểu thức:
D = \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}\)
2. Cho A = \(\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right): \left(\frac{3}{\sqrt{1-a^2}}+1\right)\)
a) Tìm điều kiện của A, rút gọn A
b) Tìm giá trị của A biết rằng a = \(\frac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{A}>A\)
P/S: BÀI NÀY GIÚP EM CÂU C VỚI Ạ
\(\left(\frac{1}{1-x}+\frac{1}{1+x}\right):\left(\frac{1}{1-x}-\frac{1}{1+x}\right)+\frac{1}{x+1}\)
a) Tìm điều kiện để A có nghĩa.
b) Rút gọn A
c) Tính giá trị A khi \(x=1+\sqrt{2}\)
\(A=\frac{\sqrt{a}-1}{a-1}.\left(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right)\) Với \(a\ge0\); \(a\ne1\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A khi \(a=\frac{1}{3+2\sqrt{2}}\)
c) Tìm giá trị nhỏ nhất của A
Cho biểu thức :\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right).\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
a, Rút gọn
b, Tìm các giá trị của x để \(\frac{P}{\sqrt{x}}>2\)
GIÚP MÌNH GIẢI CÂU B NHÉ, MÌNH BỊ MẮC MỖI B THÔI
Bài 1. tìm điều kiện xác định và tính giá trị các biểu thức sau :
1) A= \(\frac{\sqrt{x}-1}{\sqrt{x}+1}khi\) x =\(4-2\sqrt{3}\)
2) B= \(\frac{\sqrt{x}}{\sqrt{x}-\sqrt{2}}\) khi x =\(5+2\sqrt{6}\)
Bài 2. Tìm điều kiện xác định và rút gọn các biểu thức sau :
1) A= \(\frac{x+12}{x-4}+\frac{1}{\sqrt{x}+2}-\frac{4}{\sqrt{x}-2}\)
2) B = \(\frac{3\sqrt{x}-1}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{10\sqrt{x}}{x-4}\)
3) C = \(\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}-\frac{5\sqrt{x}+5}{x-4}\right).\frac{x-4}{\sqrt{x}}\)
\(\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{b-a}\right):\left(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{a}{a+b+2\sqrt{ab}}\right)\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính
A/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
B/ \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
C/ \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
D/ \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính giá trị biểu thức:
\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
\(c,\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(d,\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)