a) Rút gọn được \(P=\frac{1-x}{\sqrt{x}}\)
b) \(\frac{P}{\sqrt{x}}=\frac{\frac{1-x}{\sqrt{x}}}{\sqrt{x}}=\frac{1-x}{x}>2\)
\(\Leftrightarrow1-x>2x\)
\(\Leftrightarrow1>3x\)
\(\Leftrightarrow x< \frac{1}{3}\)
Mà \(x\ge0\Rightarrow0\le x< \frac{1}{3}\)
Vậy....
\(\text{Đ}K:x>0;x\ne1\)
\(P=\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2=\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{x}{2\sqrt{x}}\right)^2=\frac{-4\sqrt{x}}{x-1}.\frac{\left(1-x\text{ }\right)^2}{4x}=\frac{-4\sqrt{x}\left(x-1\right)^2}{\left(x-1\right)4x}=\frac{\sqrt{x}\left(x-1\right)}{-x}=\frac{1-x}{\sqrt{x}};\frac{P}{\sqrt{x}}=\frac{1-x}{x}>2\Leftrightarrow1-x>2x\left(do:x>0\right)\Leftrightarrow1>3x\Leftrightarrow0< x< \frac{1}{3}\)
a)ĐKXĐ x>0, x\(\ne1\)
Rút gọn P= \(\frac{1-x}{\sqrt{x}}\)
b)\(\frac{P}{\sqrt{x}}=\frac{1-x}{\sqrt{x}}.\frac{1}{\sqrt{x}}=\frac{1-x}{x}\)
\(\frac{P}{\sqrt{x}}>2\Leftrightarrow\frac{P}{\sqrt{x}}-2>0\Leftrightarrow\frac{1-x}{x}-2>0\)
\(\Leftrightarrow\frac{1-x-2x}{x}>0\Leftrightarrow\frac{1-3x}{x}>0\)(1)
Ta có x>0 (đkcđ) (2)
Từ (1) và (2) => 1- 3x >0
\(\Leftrightarrow3x< 1\Leftrightarrow x< \frac{1}{3}\)
Kết hợp đkxđ => 0<x <\(\frac{1}{3}\)
Vậy với \(0< x< \frac{1}{3}\) thì \(\frac{P}{\sqrt{x}}>2\)