\(VT=1+2ab+a^2b^2+1+2cd+c^2d^2+a^2c^2+b^2d^2\)
\(=a^2b^2+2abcd+2c^2d^2+2\left(ab+cd\right)+a^2c^2-2abcd+b^2d^2+2\)
\(=\left(ab+cd\right)^2+2\left(ab+cd\right)+1+\left(ac-bd\right)^2+1\)
\(=\left(ab+cd+1\right)^2+\left(ac-bd\right)^2+1\ge1\)
\(VT=1+2ab+a^2b^2+1+2cd+c^2d^2+a^2c^2+b^2d^2\)
\(=a^2b^2+2abcd+2c^2d^2+2\left(ab+cd\right)+a^2c^2-2abcd+b^2d^2+2\)
\(=\left(ab+cd\right)^2+2\left(ab+cd\right)+1+\left(ac-bd\right)^2+1\)
\(=\left(ab+cd+1\right)^2+\left(ac-bd\right)^2+1\ge1\)
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
Cho hình thang ABCD (AB // CD) có O là giao điểm của 2 đường chéo. Đường thẳng qua O song song với 2 đáy cắt AD, BC lần lượt ở E và F. Chứng minh rằng:
a) OE = OF
b) \(\frac{1}{AB}\) + \(\frac{1}{CD}\) = \(\frac{1}{OF}\)
Cho hình thang ABCD, AB // BC. I là giao của hai đường chéo. Qua I vẽ đường thẳng song song với hai đáy cắt AD tại E , BC tại F.
a, Chứng minh IE = IF
b, Chung minh \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{IE}\)
c, Chứng minh \(\dfrac{2}{EF}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
cho hình thnag abcd (ab//cd), hai đường chéo ac và bd cắt nhau taiij o . một đường thẳng d qua o // với 2 đáy cắt ad tại e, bc tại f . chứng minh 1/ab +1/cd =2/ef
1, Cho hình thang ANCD (AB // CD), M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a, Chứng minh IK // AB.
b, Đường thẳng IK cắt AD, BC lần lượt ở E và F. CHứng minh EI = IK = KF.
2, Cho hình thang ABCD có đáy nhỏ CD. Từ D, vẽ đường thẳng song song với cạnh BC, cắt AC tại M và AB tại K. Từ C, vẽ đường thẳng song song với cạnh bên AD, cắt cạnh đáy AB tại F. Qua F, vẽ đường thẳng song song với đường chéo AC, cắt cạnh bên BC tại P. Chứng minh rằng:
a, MP song song với AB.
b, Ba đường thẳng MP, CF, DB đồng qui.
VẼ HÌNH LUÔN Ạ
cho tam giác ABC cân tại A (góc A< 90 độ). từ B Kẻ BM vuông góc với AC. chứng minh rằng AM/AC=2(AB/BC)^2-1
giúp mk với
Bài 1: Cho hình thang ABCD (AB // CD) có AB = 7,5cm, CD = 12cm. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a. Chứng minh EF // AB
b. Tính độ dài đoạn EF.
Bài 2: Cho hình bình hành ABCD. Từ một điểm M trên đường chéo AC( M không là trung điểm của AC) ta vẽ các đường thẳng song song với các cạnh của hình bình hành, chúng lần lượt cắt AB, BC, CD, DA tại E, F, G, H. Chứng minh
a. HE // GF
b. Ba đường thẳng EF, GH, AC đồng quy.
Cho hình thang MNPQ (MN // PQ ), có O là giao điểm 2 đường chéo MP và NQ.
Đường thẳng song song với MN cắt MQ, NQ, MP, NP lần lượt tại A, B, C, D.
a) Chứng minh OM . OB = ON . OC
b) Chứng minh AB = CD
Bài 1:Cho tam giác ABC lấy điểm D trên AB điểm E trên tia đối của tia CA sao cho BD= DE, M là giao điểm của DE và BC.Chứng minh DE/ME=AC/AB Bài 2:Cho tam giác ABC nhọn,M là trung điểm của BC và H là trực tâm .Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự tại N và D.Chứng minh: a) NC=ND b) HI=HK Bài 3:Cho tam giác ABC,điểm M trên cạnh BC sao cho BC=4CM.Trên cạnh AC lấy điểm N sao cho CN/AN=1/3.Chứng minh:MN//AB Bài 4:Cho hình thang ABCD có hai đáy AB và CD.Gọi M là trung điểm của CD,E là giao điểm của MA và BD,F là giao điểm của MB và AC a)Chứng minh:EF//AB b)Đường thẳng EF cắt AD,BC lần lượt tại H và N.Chứng minh:HE=EF=FN c)Biết AB=7,5cm và CD=12cm.Tính độ dài đoạn thẳng HN Bài 5:Cho tam giác ABC,trên cạnh BC lấy D sao cho DB/DC=1/2.Đường thẳng qua D song song với AB cắt AC tại E,đường thẳng qua D song song với AC cắt AB tại F a)So sánh:AF/AB và AE/AC b)Gọi M là trung điểm của AC.Chứng minh:FE//BM c)Giả sử DB/DC=k.Tìm k để EF//BC