Đồ thị © có tiệm cận đứng là đường thẳng x=1 và tiệm cận ngang là đường thẳng y=2.Giao điểm của hai tiệm cận là I(1;2)
Gọi M(x0;2x0−3x0−1)∈©
Tiếp tuyến Δ của đồ thị © tại M có phương trình
y=1(x0−1)2(x−x0)+2x0−3x0−1
Giao điểm của Δ với hai tiệm cận của đồ thị © là A(1;2x0−4x0−1)vàB(2x0−1;2)
ta có:IA=|2x0−4x0−1−2|=2|x0−1|
IB=2|x0−1|
Do đó diện tích △IAB là: S=12IAIB=2
Gọi p là nửa chu vi △IAB.Khi đó bán kính đường tròn nội tiếp △IAB là r=Sp=2p
r lớn nhất khi p nhỏ nhất
mặt khác,ta có :2p=IA+IB+AB=IA+IB+IA2+IB2≥2IAIB+2IAIB=4+22
Suy ra: pmin=2+2,dấu bằng xẩy ra ⇔IA=IB⇔2|x0−1|=2|x0−1|⇔[x0=0x0=2
với x0=0,phương trình tiếp tuyến cần tìm là Δ1:y=x+3
với x0=2,phương trình tiếp tuyến cần tìm là Δ2:y=x-1