Hàm số xác định với mọi \(x\ne1\). Ta có : \(y'=\frac{-4}{\left(x-1\right)^2}\)
Gọi \(M\left(x_0;y_0\right);\left(x_0\ne1\right)\) là tiếp điểm, suy ra phương trình tiếp tuyến của (C) :
\(\Delta:y=\frac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{2x_0+2}{x_0-1}\)
a) Vì tiếp tuyến có hệ số góc bằng -4 nên ta có :
\(\frac{4}{\left(x_0-1\right)^2}=-16\Leftrightarrow\left[\begin{array}{nghiempt}x_0=\frac{3}{2}\\x_0=\frac{1}{2}\end{array}\right.\)
* \(x_0=\frac{3}{2}\Rightarrow y_0=10\Rightarrow\Delta=-16\left(x-\frac{3}{2}\right)+10\) hay \(y=-16x+22\)
* \(x_0=\frac{1}{2}\Rightarrow y_0=-6\Rightarrow\Delta=-16\left(x-\frac{1}{2}\right)-6\) hay \(y=-16x+2\)
b) Vì tiếp tuyến song song với đường thẳng d : \(y=-4x+1\) nên ta có :\(y'\left(x_0\right)=-4\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-4\Leftrightarrow x_0=0;x_0=2\)* \(x_0=0\Rightarrow y_0=2\Rightarrow\Delta:y=-4x+2\)* \(x_0=2\Rightarrow y_0=6\Rightarrow\Delta:y=-4x+14\) c) Vì tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên tiếp tuyến phải vuông góc với một trong hai đường phân giác \(y=\pm x\), do đó hệ số góc của tiếp tuyến bằng \(\pm1\) hay \(y'\left(x_0\right)=\pm1\) mà \(y'>0\), mọi \(x\ne1\) nên ta có :\(y'\left(x_0\right)=-1\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-1\Leftrightarrow x_0=-1;x_0=3\)* \(x_0=-1\Rightarrow y_0=0\Rightarrow\Delta:y=-x-1\)* \(x_0=3\Rightarrow y_0=4\Rightarrow\Delta:y=-x+7\)