Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm của tiếp tuyến d với đồ thị (C). Khi đó \(y'\left(x_0\right)=3\)
Ta có phương trình :
\(\frac{3}{\left(x_0+2\right)^2}=3\Leftrightarrow\left(x_0+2\right)^2=1\Leftrightarrow\begin{cases}x_0=-1\\x_0=-3\end{cases}\)
Phương trình tiếp tuyến d của đồ thị (C) tại các điểm (-1;1) và (-3;5) lần lượt là
\(y=3x+2;y=3x+14\)
Từ giả thiết ta được \(y=3x+2\)