Bài 5b: Tiếp tuyến của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Ngọc

Cho hàm số \(y=\frac{x^2+2x+2}{x+1};\left(C\right)\)

a. Gọi I là tâm đối xứng của (C) và M là một điểm bất kỳ thuộc (C). Tiếp tuyến tại M cắt 2 đường tiệm cận tại A và B. Chứng minh rằng M là trung điểm của AB và tam giác IAB không phụ thuộc vào vị trí của M

b. Tìm vị trí của M để AB nhỏ nhất

c. Tìm M thuộc (C) sao cho tiếp tuyến tại M vuông góc với tiệm cận xiên

Trần Minh Ngọc
3 tháng 5 2016 lúc 11:26

a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1

I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)

Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)

 \(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của ABGọi H là hình chiếu của B lên IA\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\) c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\) 

Các câu hỏi tương tự
Nguyễn Hồ Kim Trang
Xem chi tiết
Trần Đào Tuấn
Xem chi tiết
Đỗ Hà Phương
Xem chi tiết
Phan Thị Lê Anh
Xem chi tiết
Lê Nhật Bảo Khang
Xem chi tiết
Nguyễn Huỳnh Đông Anh
Xem chi tiết
Trương Hoàng Minh
Xem chi tiết
Minh Đức
Xem chi tiết
Nguyễn Duy Vũ Hoàng
Xem chi tiết