Bài Toán Về Số Học:
Trên bảng có viết các số 4 ; 5; 6 ; 7; 8 ; 9. Mỗi bước, người ta chọn 2 số x ; y trên bảng, xóa đi và thay bằng hai số \(x+y+\sqrt{x^2+y^2}\) và \(x+y-\sqrt{x^2+y^2}\). Chứng minh rằng , trong mọi thời điểm, các số trên bảng đều lớn hơn 1 và luôn có một số nhỏ hơn 7.
P/s: Bài toán được biên soạn bởi thầy Võ Quốc Bá Cẩn và thầy Trần Quốc Anh
Em nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ với ạ! Em cám ơn nhiều ạ!
Cho a,b,c là các số thực thỏa mãn \(a\ge1,b\ge2,c\ge3\) và a+b+c=9.
Tìm GTNN của biểu thức \(P=\sqrt{a-1}+\sqrt{b-2}+\sqrt{c-3}\)
Cho hai số nguyên dương \(a;b\) với \(b>1\) và thỏa mãn điều kiện \(A=\dfrac{a^2}{2.a.b^2-b^3+1}\) là số nguyên dương. Chứng minh rằng \(A\) là số chính phương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em với ạ!
Em cám ơn nhiều lắm ạ!
Cho a, b, c là các số thực dương và thỏa mãn điều kiện abc = 1
Chứng minh rằng \(\dfrac{1}{2+a}\)+\(\dfrac{1}{2+b}\)+\(\dfrac{1}{2+c}\)≤ 1
1) Cho các số thực \(a,b,c\) thỏa mãn \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)
Tính giá trị: \(P=\dfrac{a^2+2b^2+3c^2}{3a^2+2b^2+c^2}\)
2) Tìm các số dương \(x,y\) thỏa mãn: \(3^x=y^2+2y\)
Cho a,b là hai số thực dương thỏa mãn điều kiện \(a+b^2=2ab^2\) . Chứng minh rằng
\(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^8+2a^2b^2}\) ≥ \(\dfrac{1}{2}\)
Cho hàm số \(y=\dfrac{1}{2}x^2\)
1) Khảo sát và vẽ đồ thị (P) của hàm số.
2) Cho A B, là hai điểm nằm trên đồ thị (P) lần lượt có hoành độ là -1 và +2.
a) Viết phương trình đường thẳng d đi qua A và có hệ số góc bằng \(\dfrac{1}{2}\)
b) Chứng tỏ điểm B cũng nằm trên đường thẳng d.
Cho hàm số \(y=\dfrac{1}{2}x^2\)
1) Khảo sát và vẽ đồ thị (P) của hàm số.
2) Cho A B, là hai điểm nằm trên đồ thị (P) lần lượt có hoành độ là -1 và +2.
a) Viết phương trình đường thẳng d đi qua A và có hệ số góc bằng \(\dfrac{1}{2}\)
b) Chứng tỏ điểm B cũng nằm trên đường thẳng d.
Cho a,b,c là các số thực ko âm thỏa \(a+b+c=1\)
Tìm GTLN \(P=\left(a+2b+3c\right)\left(6a+3b+2c\right)\)
P/s: Nếu làm theo AG-GM thì cho e hỏi là tại sao \(2\left(\dfrac{4-\dfrac{b}{2}}{2}\right)^2=8\) ạ