a: Ta có: MN//AB
nên \(\widehat{ABC}=\widehat{MNC}\)
=>\(\widehat{MBN}=\widehat{MNP}\)
mà \(\widehat{MBN}=\widehat{NMB}\)
nên \(\widehat{NMB}=\widehat{MNP}\)
=>NP//BM
b: Ta có: MN//AB
nên \(\widehat{ABN}+\widehat{MNB}=180^0\)
Gọi E là giao điểm của BM và NQ
\(\widehat{EBN}+\widehat{ENB}=\dfrac{1}{2}\left(\widehat{ABN}+\widehat{MNB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
=>\(\widehat{BEN}=90^0\)
hay BM\(\perp\)NQ