a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác BDCE có
M là trung điểm của ED
M là trung điểm của BC
Do đó: BDCE là hình bình hành
Suy ra: CE=BD
c: AD+BD=AB
=>AD+CE=AC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét tứ giác BDCE có
M là trung điểm của ED
M là trung điểm của BC
Do đó: BDCE là hình bình hành
Suy ra: CE=BD
c: AD+BD=AB
=>AD+CE=AC
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A (AB < AC). Trên tia đối của tia AB, lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB.
a) Chứng minh tam giác ABC = tam giác ADE
b) vẽ ah vuông góc bc tại h chứng minh tam giác bah và tam giác ach
c) tia ha cắt dc tại k chứng minh k là trung điểm của DE
d) chứng minh bd // ce và bd + ce bằng be2
cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a)Chứng minh tam giác AHB = tam giác AHC
b) trên tia đối của tia HA lấy điểm M sao cho HM = HA Chứng minh tam giác AHB = tam giác MHC và MC song song AB Chứng minh tam giác ACM cân
c)Trên tia đối của tia CM, lấy điểm N sao cho C là trung điểm của MN. Gọi O là giao điểm của AC và HN, OM cắt AN tại K. Chứng minh: 20k=OM
Cho tam giác ABC có cạnh AB=AC,M là trung điểm của BC
a. chứng minh △ABM=△ACM
b. trên tia đối của tia MA lấy điểm D sao cho MD=MA.
c, trên nửa mặt phẳng bờ AC không chứa điểm B, vẽ tia Ax song song với BC lấy điểm I ϵ Ax sao cho AI=BC. Chứng minh 3 điểm D,C,I thẳng hàng.
Cho tam giác ABC (AB < AC) , AH vuông góc BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Chứng minh : AB = CE và BD = CE.
b) Gọi F là trung điểm của DE. Chứng minh MF vuông góc với DE.
c) MF có song song với AD không? Vì sao?
Cho ΔABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a. Chứng minh: ΔABM = ΔDCM
b. Chứng minh: AB // DC
c. Kẻ BE ⊥ AM ( E ∈ AM) , CF ⊥ DM (F ∈ DM) . Chứng minh: M là trung điểm của EF