a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Ta có: BM+DB=DM
CM+CE=ME
mà BM=CM
và DB=CE
nên DM=ME
hay M là trung điểm của DE
Ta có: ΔADE cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
c: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK và AH=AK
d: Xét ΔADE có
AH/AD=AK/AE
nên HK//DE