Bài 2: Dãy số

Nguyễn Thu Ngà

\(u_n=\dfrac{n+1}{2^{n+1}}\left(\dfrac{2}{1}+\dfrac{2^2}{2}+\dfrac{2^3}{3}+...+\dfrac{2^n}{n}\right)\).

Chứng minh \(\left(u_n\right)\) có giới hạn và tìm giới hạn đó.

Akai Haruma
13 tháng 4 2021 lúc 14:50

Lời giải:

\(u_{n+1}=\frac{n+2}{2^{n+2}}\left(\frac{2}{1}+...+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2^{n+1}}\left(\frac{2^{n+1}}{n+1}u_n+\frac{2^{n+1}}{n+1}\right)=\frac{n+2}{2n+2}(u_n+1)\)

Ta chứng minh $u_n\geq 1(*)$ với mọi $n=1,2,...$

Thật vậy: 

$u_1=1; u_2=\frac{3}{2}>1$. Giả sử $(*)$ đúng đến $n=k$

$u_{k+1}=\frac{k+2}{2k+2}(u_k+1)>\frac{2(k+2)}{2k+2}>1$

Do đó $u_n\geq 1$ với mọi $n=1,2,...$

Tiếp theo ta chứng minh $u_n< 1+\frac{4}{n}(**)$ với mọi $n=1,2,...$

Thật vậy:

$u_1=1< 1+\frac{4}{1}$

$u_2=\frac{3}{2}< 1+\frac{4}{2};....;u_4=\frac{5}{3}<1+\frac{4}{4}$

....

Giả sử $(**)$ đúng đến $n=k\geq 5$. Khi đó:

\(u_{k+1}=\frac{k+2}{2k+2}(u_k+1)<\frac{k+2}{2k+2}(2+\frac{4}{k})=\frac{(k+2)^2}{k(k+1)}\)

\(\frac{(k+2)^2}{k(k+1)}-(1+\frac{4}{k+1})=\frac{(k+2)^2-k(k+5)}{k(k+1)}=\frac{4-k}{k(k+1)}<0\) với mọi $k\geq 5$

$\Rightarrow u_{k+1}< 1+\frac{4}{k+1}$. Phép quy nạp hoàn tất.

Do đó $(**)$ đúng

Từ $(*); (**)\Rightarrow 1\leq u_n\leq 1+\frac{4}{n}$ với mọi $n=1,2,...$

Mà $\lim (1+\frac{4}{n})=1$ khi $n\to +\infty$ nên $\lim u_n=1$

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Thu Ngà
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mai Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tâm Cao
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết