Cho dãy số \(\left(u_n\right)\) xác định bởi: \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=\dfrac{u_n^2}{u_{n-1}}\end{matrix}\right.\) với \(n\ge2\)
a, Chứng minh dãy số \(\left(v_n\right):v_n=\dfrac{u_n}{u_{n-1}}\) là dãy số không đổi
b,Tìm công thức tổng quát của dãy số \(\left(u_n\right)\)
Cho dãy số \(\left(u_n\right)\)thỏa mãn: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{2u_n}{u_n+4},n\ge1\end{matrix}\right.\)
Tìm công thức số hạng tổng quát của \(\left(u_n\right)\)
Cho \(u_n\)thỏa mãn \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=u^2_n-u^{ }_n+2\end{matrix}\right.\)với \(n\ge2\)
Đặt \(S_n=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_n^2+1\right)-1\) với \(n\ge1\)
Chứng minh rằng: \(S_n\) là số chính phương
Xét tính tăng giảm của dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{3u_n+1}{u_n+1}\end{matrix}\right.\)
Xét tính tăng giảm của dãy số \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{3u_n+1}{u_n+1}\end{matrix}\right.\)
Cho dãy số \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{u_n+1}{2}\end{matrix}\right.\) với \(n\ge1\)
a, Viết 4 số hạng đầu của dãy số
b, Chứng minh rằng \(u_n>1\) với \(n\ge1\)
c, Tìm CTTQ của dãy
Cho dãy số thực \(\left(u_n\right)\)xác định bởi: \(\left\{{}\begin{matrix}u_1=\sin1\\u_n=u_{n-1}+\dfrac{\sin n}{n^2},\forall n\in N,n\ge2\end{matrix}\right.\)
Chứng minh rằng dãy số xác định như trên là một dãy số bị chăn
\(\left\{{}\begin{matrix}u_1=u_2=1\\u_n=u_{n-1}+u_{n-2}\end{matrix}\right.\forall n>2,n\in N^{sao}\)
Viết 5 số hạng đầu của dãy số \(u_n\)
\(\left\{{}\begin{matrix}u_1=0\\u_{n+1}=2u_n+\left(n+1\right).3^n\end{matrix}\right.\)
Tìm số hạng tổng quát \(\left(u_n\right)\)