Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}.\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)
Chúc bạn học tốt!
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) (k\(\in\)N*)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Thay vào ta có:
\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)
\(\Rightarrow\)\(\frac{a}{a+b}=\frac{c}{c+d}\)
Vậy \(\frac{a}{a+b}=\frac{c}{c+d}\)(điều phải chứng minh)
Hok tốt nha!!!