Từ một điểm A cố định nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC (B, C là 2 tiếp điểm)
a) Chứng minh tứ giác ABOC nội tiếp
b) Kẻ cát tuyến AMN của đt (O) (M nằm giữa A và N). Chứng minh: AC2 = AM.AN
c) Gọi I là trung điểm của đoạn thẳng MN. So sánh góc ACB và góc AIB
d) Khi cát tuyến AMn quay quanh điểm A thì điểm I chạy trên đường nào?
Cho đường tròn tâm (O). Từ điểm S ở ngoài đường tròn (O) kẻ các tiếp tuyến SA và SB với (O) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.a/ Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.b/ Chứng minh IS là đường phân giác của góc AIB.c/ Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
Cho đường tròn tâm O , bán kính R . Từ điểm C nằm ngoài tròn kế tiếp tuyến CA , CB và cát tuyến CMN với đường tròn (O) (A , B là hai tiếp điểm , M nằm giữa C và N ) . Gọi H là giao điểm của CO và AB.
a. Cm tứ giác AOBC nội tiếp.
b. Cmr : CH . CO = CM . CN
c.Tiếp tuyến tại M cuả đường tròn (O) cắt CA , CB theo thứ tự tại E và F.Đường vuông góc với CO tại O cắt CA, CB theo thứ tự là P,Q. Cm : ∠POE =∠OFQ
d. Cmr : PE + QF ≥ PQ
Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
cho đường tròn (O) và một điểm A cố định nằm ngoài (O) .Kẻ tiếp tuyến AB,AC với (O) ,(B,C là các tiếp điểm ) .Gọi am là một điểm di động trên cung nhỏ BC (M khác B và C ) .Đường thẳng AM cắt (O) tại điểm thứ 2 là N .Gọi E là trung điểm của MN
1, chứng minh 4 điểm A,B,O,E cùng thuộc một đường tròn .Xác định tâm của đường tròn đó
2, chứng minh 2 góc BNC +góc BAC = 180 độ
3, chứng minh AC bình (mũ 2) =AM.AN và MN bình (mũ 2) =4(AE bình -AC bình )
4, gọi I ,J lần lượt là hình chiếu của M trên cạnh AB ,AC .Xác định vị trí của M sao cho tích MI.MJ đạt giác trị lớn nhất
Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất
Bài 1: Cho đường tròn (O;R) và điểm S ở ngoài (O). Qua S kẻ các tiếp tuyến SA, SB với (O) trong đó A, B là các tiếp điểm. Gọi M là trung điểm của SA, BM cắt đường tròn (O) tại điểm thứ hai C
a) Chứng minh tứ giác OASB nội tiếp
b) Chứng minh MA2 = MB.MC
c) Gọi N đối xứng với C qua M. Chứng minh góc CSA = góc MBS
d) Chứng minh NO là tia phân giác của góc ANB
Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee