Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó. Từ điểm A kẻ hai tiếp tuyến AM, AN với đường tròn (O) (M,N là 2 tiếp điểm ). Kẻ cát tuyến ABC không đi qua O (B nằm giữa A và C ) gọi H là trung điểm của BC
a) chứng minh rằng các điểm o,h,m,a,n cùng thuộc 1 đường tròn
b) chứng minh HA là tia phân giác góc MHN
Cho đường tròn (O;R). Từ A trên (O) kẻ tiếp tuyến (d) với O trên (d) lấy M bất kì (M≠A). Kẻ cát tuyến M,N,P. Gọi K là trung điểm của NP, kẻ tiếp tuyến MB, kẻ AC⊥MB, BD⊥MA. Gọi H là giao điểm của AC và BD; I là giao điểm của OM và AB. Chứng minh:
a) 5 điểm O,K,A,M,B cùng thuộc một đường tròn.
b) OI.OM=R2 và OI.IM=IA2
c) OAHB là hình thoi.
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC
từ điểm A nằm ngoài đường trong (O) vẽ hai tiếp tuyến AB,AC với đương tròn (B,C là hai tiếp điểm ) Kẻ đường kính CD của đường tròn (O)
Chứng minh OA vuông góc BC
chứng minh BD // OA
kẻ BH vuông góc CD gọi K là giao điểm BH và AD Chứng minh K là trung điểm của BH
Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E). a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn. b) Chứng minh: OA BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA. c) Chứng minh BC trùng với tia phân giác của góc DHE. d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN
Từ điểm M nằm ngoài (O), kẻ tiếp tuyến MA với (O), (A là tiếp điểm). Từ A kẻ đường thẳng vuông góc với OM tại H và cắt (O) tại B ( B khác A). Kẻ đường kính AC của (O). Tiếp tuyến tại C của (O) cắt đường thẳng AB tại E. a) CM: 4 điểm E,H,O,C cùng thuộc 1 đường tròn b) CM: Tam giác AMB cân c) CM: BE.BM=BC.BO