Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Người Bí Ẩn

Từ điểm M nằm ngoài (O), kẻ tiếp tuyến MA với (O), (A là tiếp điểm). Từ A kẻ đường thẳng vuông góc với OM tại H và cắt (O) tại B ( B khác A). Kẻ đường kính AC của (O). Tiếp tuyến tại C của (O) cắt đường thẳng AB tại E.                     a) CM: 4 điểm E,H,O,C cùng thuộc 1 đường tròn                                                   b) CM: Tam giác AMB cân                                                                                    c) CM: BE.BM=BC.BO             

Nguyễn Việt Lâm
23 tháng 1 lúc 20:28

a. Em tự giải

b. 

\(\Delta OAB\) cân tại O (do \(OA=OB=R\), mà \(OH\) là đường vuông góc (do OH vuông góc AB)

\(\Rightarrow OH\) đồng thời là trung tuyến và trung trực của AB

Hay OM là trung trực của AB

\(\Rightarrow MA=MB\Rightarrow\Delta MAB\) cân tại M

c.

Do EC là tiếp tuyến tại C \(\Rightarrow EC\perp AC\)

MA là tiếp tuyến tại A \(\Rightarrow MA\perp AC\)

\(\Rightarrow EC||MA\Rightarrow\widehat{MAH}=\widehat{CEB}\) (so le trong)

Mà \(\widehat{MAH}=\widehat{MOA}\) (cùng phụ \(\widehat{AMH}\))

\(\Rightarrow\widehat{CEB}=\widehat{MOA}\)

Xét hai tam giác CEB và MOA có:

\(\left\{{}\begin{matrix}\widehat{CEB}=\widehat{MOA}\left(cmt\right)\\\widehat{CBE}=\widehat{MAO}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta CEB\sim\Delta MOA\left(g.g\right)\)

\(\Rightarrow\dfrac{BE}{OA}=\dfrac{BC}{AM}\Rightarrow BE.AM=BC.OA\)

Mà \(MA=MB\) (theo cm câu b) và \(OA=BO=R\)

\(\Rightarrow BE.BM=BC.BO\)

Nguyễn Việt Lâm
23 tháng 1 lúc 20:29

loading...

a: Xét tứ giác EHOC có \(\widehat{EHO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EHOC là tứ giác nội tiếp

=>E,H,O,C cùng thuộc một đường tròn

b: Ta có: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB

Xét ΔAOM và ΔBOM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔAOM=ΔBOM

=>MA=MB

=>ΔMAB cân tại M

c: Ta có: ΔAOM=ΔBOM

=>\(\widehat{OAM}=\widehat{OBM}=90^0\)

Xét tứ giác OAMB có \(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

nên OAMB là tứ giác nội tiếp

=>\(\widehat{OMB}=\widehat{OAB}=\widehat{CAB}\left(1\right)\)

Xét (O) có

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

\(\widehat{ECB}\) là góc tạo bởi tiếp tuyến CE và dây cung CB

Do đó: \(\widehat{CAB}=\widehat{ECB}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{OMB}=\widehat{ECB}\)

Xét ΔOMB và ΔECB có

\(\widehat{OMB}=\widehat{ECB}\)

\(\widehat{OBM}=\widehat{EBC}=90^0\)

Do đó: ΔOMB~ΔECB

=>\(\dfrac{BO}{BE}=\dfrac{BM}{BC}\)

=>\(BO\cdot BC=BM\cdot BE\)

Nguyễn Việt Lâm
23 tháng 1 lúc 20:57

a.

Do \(OH\perp AB\Rightarrow\Delta OHE\) vuông tại H

\(\Rightarrow\) Tam giác OHE nội tiếp đường tròn đường kính OE (1)

Do CE là tiếp tuyến tại C \(\Rightarrow CE\perp OC\)

\(\Rightarrow\Delta OCE\) vuông tại C

\(\Rightarrow\) Tam giác OCE nội tiếp đường tròn đường kính OE (2)

(1);(2) \(\Rightarrow4\) điểm E,H,O,C cùng thuộc đường tròn đường kính OE


Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
Phuhihj
Xem chi tiết
Ngọc Nhi
Xem chi tiết
Trần Thị Phương Kim
Xem chi tiết
Cá hồi
Xem chi tiết
Phạm Duy Hùng
Xem chi tiết
Vy Nguyễn
Xem chi tiết
ABCXYZ
Xem chi tiết
Hùng Trần Phi
Xem chi tiết