Tự luận
Câu 1:
a) y = \(\frac{2x^3-3}{4x-3}\)
ĐK: \(4x-3\ne0\Rightarrow4x\ne3\Rightarrow x\ne\frac{3}{4}\)
TXD: D = R / {\(\frac{3}{4}\)}
b) y = \(x-4+\sqrt{5x-1}\)
ĐK: \(5x-1\ge0\Rightarrow5x\ge1\Rightarrow x\ge\frac{1}{5}\)
TXD: D = [\(\frac{1}{5}\); +∞)
Câu 2 Xét tính chẵn lẻ của hàm số: y = \(3x^3-2x\)
TXD: D = R
\(\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(-x\right)=3\left(-x\right)^3-2\left(-x\right)=-3x^3+2x=-f\left(x\right)\end{matrix}\right.\)
=> hàm số y = \(3x^3-2x\) là hàm lẻ
Câu 3 a) (P): \(y=-x^2+2x-4\) (a < 0)
+ Đỉnh I(1;-3)
+ Trục đối xứng: x = 1
+ Giao với Oy là điểm có tọa độ (0; -4)
Bảng biến thiên: Chọn thêm điểm:
x | -∞ 1 +∞ |
y |
+∞ +∞
-3 |
Vẽ đồ thị:
\(3x^3-2x\)