Từ điểm A nằm ngoài đường tròn (O; R) kẻ các tiếp tuyến AB ,AC với đường tròn (O) ở E ( E khác D ). Gọi H là giao điểm của AO và BC a) chứng minh 4 điểm A,B,O,C cùng thuộc đường tròn và chứng minh AO vuông góc BC tại H b) chứng minh AE.AD=AH.AO c) gọi I là trung điểm của HA. Chứng minh tâm giác AIB đồng dạng với tam giác BHD
a: Xét tứ giác ABOC có
góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
Do đó: ΔABE đồng dạng với ΔADB
=>AB/AD=AE/AB
=>AB^2=AD*AE=AH*AO